Some years back I got a Timberwolf frame for my Glock 17 from Lone Wolf Distributors. It was shortly after they were introduced, and I liked the idea of the 1911-style ergonomics. I was very happy with it, and only wished that they had one for the larger caliber Glocks.
But as such things go, I never got around to following up and getting one when I heard that they had developed a larger frame to accommodate 10mm and .45 caliber Glocks. But I had recently introduced a shooting buddy to the 9mm Timberwolf, and that reminded me to look into getting one for my G21 I have set up to handle .45 Super. This one:
Here it is with the .460 Rowland barrel and compensator. I seldom shoot it in this configuration now, and the pics below show it with the .45 Super barrel and compensator.
And I was pleasantly surprised when I found out that one option when ordering the Timberwolf frame is to get it without any texture. The idea is that Lone Wolf offers some different laser-texture designs as upgrades. But since I have my own laser …
… I decided to do my own custom design. Not just for the Grip, but as something of a theme for the gun. I could have completely personalized it, but decided that I wanted to stick with something which might be of interest to someone else, should I ever decide to sell the gun. So I came up with a geometric motif I liked which I thought would give sufficient grip texture to handle the fairly powerful .45 Super loadings. So what follows are pics of the process:
Bare frame. First, I did the grip sides with this “3-D Cube” motif.Then I added diamonds along the side of the front of the grip. This was slightly problematic, since my laser has limited focal range, and I couldn’t just stand the frame up to work on the front of the grip directly.The backstrap was easy to do with isolated 3-D Cubes, since it is a detachable piece. I like having some tape on the front of the slide, so came up with this simple design based on the 3-D Cubes.Finished product, view 1.Finished product, view 2.Finished product, view 3.Finished product, view 4.
I have already had a chance to shoot it with this configuration, and was really happy with the way it felt in my hand. The texture was fine, and I felt like it wouldn’t slip around even if my hands were wet with sweat, etc.
And I’m very happy with the new Timberwolf frame’s ergonomics and how it points more naturally for me. Glocks are good guns, but they have always felt a little awkward in my hands, requiring more attention for me to shoot consistently well. This has solved that issue.
Jim Downey
PS: No, I’m not available to do custom laser work. But you’re welcome to see the full range of designs I do have available here: http://enlightened-art.com/index.html
It’s been a kind of rough year, what with the Covid-19 pandemic and all. So I’ve been inclined to cut people some extra slack. Because normal business operations have been disrupted, everyone is dealing with a lot more unexpected stress in their lives, et cetera. But after five months of back & forth, of repeated promises unfulfilled, and a complete failure to respond to reasonable requests, I feel like I need to let the shooting community know about a major disappointment I’ve experienced with an ammo manufacturer.
At the end of February I wrote about a problem I’d discovered with some Corbon .44 magnum ammo. You can find the entire post here:
Now, the folks at Corbon are smart. I’m sure their engineers actually tested this ammo in some typical .44magnum revolvers. But all it would take is for slight differences (think a couple thousandths of an inch) in the rate or position of that chamber tapering from manufacturer to manufacturer to cause this problem. Chances are, they just didn’t test it in a Taurus .44 of this model, or a Colt Anaconda. It is also possible that this batch of bullets (all five boxes I got are from the same lot — I checked) is just slightly out of spec, but no one has yet noticed it in their guns, because the tolerances in other manufacturers are a little bit different.
Either way, I’m fairly sure that I could just take some sandpaper or a fine file to that slight swelling on the bullets, and they’d fit right into my gun. But first I’m going to wait and see whether I hear back from Corbon about this issue (yeah, I sent them an explanatory email a couple days ago).
I heard back from them shortly after that. I sent them the blog post. We talked. They asked me to return the entire batch of ammo (a total of 5 boxes) so they could examine it, and sent me a shipping label. I did so in the beginning of March.
They got the ammo. I called them again, and they said that they were going to check it all against their quality control protocols, and promised to get me replacement ammo ASAP.
Well, then things went to hell with Covid. Next time I chatted with them, I was told that they needed to see if they had a different lot of that particular cartridge they could send me as a replacement, but that someone would be in touch with me within a few days.
Well, I didn’t hear anything for a couple of weeks. So I followed up. After some more back & forth I was again promised that I would soon get replacement ammo.
Again, I didn’t hear anything for a couple of weeks, and no replacement ammo was sent. I tried calling and leaving messages. I used the “contact us” feature off the Corbon website. I emailed. No response.
I waited another five or six weeks. Finally, the beginning of June I sent an email to the contact person, and here’s the relevant excerpt:
I wanted to follow up to this with an email, because while we’ve talked about the matter multiple times over the intervening three months, each time I’ve been promised someone will get back to me with either information or replacement ammo, nothing has happened. I understand that the disruptions caused by Covid-19 have thrown a lot of things off schedule, but I would like to get this resolved.
As we’ve discussed, I returned five boxes of Corbon 165gr .44mag ammunition in March for your examination as to why the ammo would not properly load in either a Taurus or Colt Anaconda .44mag revolver. Full details on the problem I encountered is discussed in the blog post linked in my original email below.
At this point I’m no longer concerned with replacement of the exact type of ammo. If you’ll just ship me five boxes of your premium defensive ammo in any of the following calibers, that will be satisfactory enough:
9mm
.357 magnum
.44 magnum
.45 Super
Well, I’ve never heard back from them.
And that surprises me. Because I identified that I was with Ballistics By The Inch, which is kinda well known in the firearms/ammunition industry. So while I don’t expect special treatment, it’d be foolish for them to treat me poorly. But they have.
And if they’re going to treat me that way, how do you think they’ll treat you? I sent them the ammo and information so that they could improve their product, possibly avoid a lawsuit related to manufacturing flaws, and they stiff me on the replacement ammunition.
Please share this information with others who maybe want to know that. Thanks.
When you see this tag on a pistol, you know things may get interesting:
Can’t read it? Here’s the text:
CAUTION
This gun is unique in many
ways. Do not handle and/or
fire it without having read
the instruction manual.
If there is anything you don’t
understand, seek advice
from someone qualified in
safe handling of firearms.
Of course, we didn’t have the instruction manual. Details, details.
Here’s the tag in context:
Yeah, that’s a new production Wildey Survivor with a 10″ barrel, in .45 Winchester Magnum. Bit of a brute. Here are some other pics of the one we shot:
The Wildey is one of those interesting experimental guns dating back to the 1970s. It uses a gas-operated system at fairly high pressures to fling a substantial slug at high velocity: the .45 WinMag version we shot is supposed to move a 230gr bullet at about 1,600fps, for about 1,300 ft/labs of energy. Now, that’s about 40% more power than the .45 Super or .460 Rowland cartridges out of a similar length barrel, so it is definitely nothing to sneeze at.
Even more interesting, the Wildey has a collar behind the barrel which allows you to adjust the gas pressure for different loads or to manage recoil while minimizing malfunctions. Well, at least in theory.
Why do I say “in theory”? Well, because in practice the thing was very finicky. Which certainly could have just been a matter of it being a brand-new gun in the hands of inexperienced shooters (well, inexperienced in shooting a Wildey … the three of us shooting it were the BBTI team, and I think it’s fair to say we have more than the typical amount of handgun shooting experience). But check out this video of Ian from Forgotten Weapons putting a Wildey Survivor through its paces and you’ll see what I mean:
He has all kinds of problems with it, rarely getting off two or three shots before experiencing a malfunction. That was exactly our experience with the gun.
Now, I don’t want to give the impression that I hated the gun. I don’t have enough experience with it to have that much of an opinion, having only run a couple of mags through it myself. But all three of us had major problems with the gun, even after we consulted online resources to get tips on managing the malfunctions and tweaking the gas adjustment.
It is a cool, innovative design. It’s very well made. You pick it up, and you know you are holding something high quality. And hey, it was even a movie star. How can you not like that?
But at 4 pounds+ weight, and a substantial grip size, it is, as I said, a bit of a brute. And interestingly, as Ian notes at the end of the video above, the thing is all sharp edges just asking for a blood sacrifice. In fact, the BBTI member who took it home to clean it sliced up his hands while doing so.
An interesting gun. I’m glad I got the chance to shoot it. But I wouldn’t want to own one.
This post is NOT about gun control, even though the article which it references specifically is. I don’t want to get into that discussion here, and will delete any comments which attempt to discuss it.
Rather, I want to look at the article in order to better understand ‘real world’ handgun effectiveness, in terms of the article’s conclusions. Specifically, as relates to the correlation between handgun power (what they call ‘caliber’) and lethality.
First, I want to note that the article assumes that there is a direct relationship between caliber and power, but the terminology used to distinguish between small, medium, and large caliber firearms is imprecise and potentially misleading. Here are the classifications from the beginning of the article:
These 367 cases were divided into 3 groups by caliber: small (.22, .25, and .32), medium (.38, .380, and 9 mm), or large (.357 magnum, .40, .44 magnum, .45, 10 mm, and 7.62 × 39 mm).
And then again later:
In all analyses, caliber was coded as either small (.22, .25, and .32), medium (.38, .380, and 9 mm), or large (.357 magnum, .40, .44 magnum, .45, 10 mm, and 7.62 × 39 mm).
OK, obviously, what they actually mean are cartridges, not calibers. That’s because while there is a real difference in average power between .38 Special, .380 ACP, 9mm, and .357 Magnum cartridges, all four are nominally the same caliber (.355 – .357). The case dimensions, and the amount/type of gunpowder in it, makes a very big difference in the amount of power (muzzle energy) generated.
So suppose that what they actually mean is that the amount of power generated by a given cartridge correlates to the lethality of the handgun in practical use. Because otherwise, you’d have to include the .357 Magnum data with the “medium” calibers. Does that make sense?
Well, intuitively, it does. I think most experienced firearms users would agree that in general, a more powerful gun is more effective for self defense (or for offense, which this study is about). Other things being equal (ability to shoot either cartridge well and accurately, concealability, etc), most of us would rather have a .38 Sp/9mm over a .22. But when you start looking at the range of what they call “medium” and “large” calibers, things aren’t nearly so clear. To borrow from a previous post, this graph shows that the muzzle energies between 9mm+P, .40 S&W, and .45 ACP are almost identical in our testing:
Note that 10mm (and .357 Sig) are another step up in power, and that .357 Mag out of a longer barrel outperforms all of them. This graph doesn’t show it, but .38 Sp is very similar to 9mm, .45 Super is as good as or better than .357 Mag, and .44 Magnum beats everything.
Relative to shootings involving small-caliber firearms (reference category), the odds of death if the gun was large caliber were 4.5 times higher (OR, 4.54; 95% CI, 2.37-8.70; P < .001) and, if medium caliber, 2.3 times higher (OR, 2.25; 95% CI, 1.37-3.70; P = .001).
certainly seems to carry a lot of import, but I’m just not sure how much to trust it. My statistical skills are not up to critiquing their analysis or offering my own assessment using their data in any rigorous way. Perhaps someone else can do so.
I suspect that what we actually see here is that there is a continuum over a range of different handgun powers and lethality which includes a number of different factors, but which the study tried to simplify using artificial distinctions for their own purposes.
Which basically takes us back to what gun owners have known and argued about for decades: there are just too many factors to say that a given cartridge/caliber is better than another in some ideal sense, and that each person has to find the right balance which makes sense for themselves in a given context. For some situations, you want a bigger bullet. For other situations, you want a smaller gun. And for most situations, you want what you prefer.
Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com about six years ago, and it originally ran without a byline as an “Editor’s Review” for all the different Bond Arms Derringers. Images used are from that original article. Some additional observations at the end.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Is there anything more classically American than a derringer?
Yeah, sure there is. Sam Colt’s revolver, JMB’s M1911, the lever-action repeating rifle — the list goes on. We’ve got a long and admirable history in firearms design, but derringers remain one of the most easily identifiable and storied handguns even among those who know very little about firearms. Anyone who has seen any Western has probably seen a derringer of one sort or another and recognized it as such.
So it’s unsurprising that there remains a pretty solid interest in derringers, even in this day and age of smaller and lighter handguns that are arguably “better” for the role that derringers originally filled as a pocket/backup gun.
Since the mid 1990s Bond Arms has been producing fine-quality derringers based on the original nineteenth century iconic Remington design. I own a Bond C2K model chambered in .410/.45 Colt. The 3.5″ barrel will handle up to 3″ long .410 shotgun shells, or the .45 Colt ammunition of your choice. In addition, I’ve had the good fortune to shoot just about every other barrel configuration that Bond makes for this firearm (because the barrels are easily interchangeable). My C2K has the standard sized Rosewood grips – though they can be swapped out for extended grips with very little difficulty.
It is a very well made and attractive little gun. The fit and finish are excellent. The brushed stainless steel finish wears well and is resistant to marring. Modern design tweaks include a trigger guard and a crossbolt safety, but both of these are well integrated with the overall appearance. There is sufficient weight to moderate the recoil of even the most powerful loads. I like the gun — a lot — for what it is: something of a novelty item suitable for certain tasks.
Those tasks?
Well, having a bit of fun, mostly, and with the appropriate .410 load it’d make a decent gun for snakes. That’s about it — I’m one of those who think that it isn’t very well suited for concealed-carry purposes given the weight and the two-shot capacity.
There are some things I really like. It is smaller than a J-frame sized revolver, is very comparable to any of the common “micro .380″ guns in overall size, and can pack a much more powerful cartridge depending on your barrel choice.
Features
However, there are also a few things I don’t much care for with this gun. Trigger pull can be very erratic from one gun to the next — some I have shot are very easy and smooth, but the one I have is so hard that my wife could not fire it reliably. I haven’t taken the time to investigate what would be involved in easing and smoothing out the trigger pull, but this is something that shouldn’t be necessary for the owner to have to fuss with.
Accuracy isn’t great, even considering what it was meant to be. This is more of a problem with my particular model since there is only 0.5″ of rifling at the end of the barrel, in order to accommodate a 3″ shot shell. If I wanted to use this gun for, say, SASS competition, I’d probably get a .38 special/.357 magnum barrel for it and be much happier with the accuracy.
The Verdict
So, there you go. If you shoot Cowboy Action, this’d be a fun little gun to include in your set-up. If you’re worried about snakes while out fishing or hiking, a Bond derringer would be a good solution. Or, if you just want to have a dependable version of a classic American novelty item, this is a great option.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First things first: I discovered a year or so after that was posted that the common wisdom about the triggers was to remove the trigger guard. It’s easily done with just an Allen wrench, and makes all the difference in the world, because the trick to the trigger is to get your finger very low on the trigger to have proper leverage. Since the gun is single-action only, removing the trigger guard doesn’t present any safety problems.
Also, I have indeed expanded my selection of barrels for the Bond and now have both the .38/.357 barrel and a .45 acp barrel. Shooting full magnums (or .45 Super) out of the derringer isn’t fun, but does give you much more power options. And as I expected, accuracy with these barrels is much better than with the .410/.45 Colt barrel.
I still think that there are better options for a small concealed-carry/backup gun. But particularly with the right ammo, the Bond Arms derringer isn’t a bad choice. YMMV, of course.
Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 9/18/2012. Images used are from that original article. Some additional observations at the end.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At the risk of seeming to be obsessed with the .460 Rowland cartridge, given that I have written about it three times this year, allow me to give a report on what it is actually like to convert a Generation 3 Glock 21 over to .460 Rowland using a conversion kit from 460Rowland.com.
One of my Ballistics By The Inch buddies had a Glock 21 9/11 Commemorative model, and was anxious to try the conversion kit. He ordered it in, got it in good time, and we got together to give it a try.
The process
First thing we did was field strip the Glock and check everything over. The gun has been shot, but not a lot. Everything with it looked fine.
We went ahead and set up a single chrono, just so we could get some numbers for comparison. This wasn’t the usual more formal BBTI set-up, but we figured it would suffice.
Using the original .45 ACP hardware in the Glock, we shot some standard 230-grain ball ammo. It gave us readings in the expected range: about 780 fps. Then we ran some premium self-defense ammo, Cor-Bon 230 grain +P JHPs, and again got performance in the range expected: about 980 fps. Satisfied that the Glock was performing normally, we turned to the conversion kit.
The kit used came with just three items:
A new five-inch barrel chambered for the .460 Rowland and with about a half inch of threading on the end
A new captured recoil spring assembly
A threaded compensator
The current kit shown on the site now also has a small packet of what looks like blue loc-tite and runs for $319 (now $387, more for a Gen 4).
The instructions indicate that you’re supposed to secure the compensator with loc-tite, so my buddy brought some along. This is probably why they now include a small packet of it with the kit.
If you’re familiar with Glocks, you know that field-stripping the gun is simplicity itself. We did so, and removed the original spring assembly and barrel.
Then we checked to make sure the new parts looked like they would fit. Everything seemed fine in comparison to the original parts. We installed the new barrel, then the new recoil spring assembly. Close examination seemed to indicate everything was where it needed to be.
We re-assembled the slide to the frame. Again, everything seemed to be fine. Manually cycling the gun, there was little or no noticeable difference.
We decided to go ahead and try the gun at that point, before mounting the compensator, just to get a feel for it. This is not recommended, but we wanted to be thorough in our test, as informal as it was.
The test
The .460 Rowland ammo we had was the same as we had tested previously for BBTI, and what started me on this kick: Cor-Bon 230 grain ‘Hunter’ JHP.
Initial shots were about 1170 fps. Just about what I expected. The recoil was stout, and there was some muzzle flip, but neither was particularly bad. We proceeded to mount the compensator that came with the kit. The compensator just screws onto the threaded portion of the extended barrel. You screw it down until it is almost to the front of the slide, with the compensation holes facing straight up. Then back it off a couple of turns, add some loc-tite, and reposition the compensator. Allow it to dry sufficiently.
Once it was ready (not completely cured, but sufficient for our needs), we loaded the gun again and ran it through its paces.
And we gained about 50 fps. Yeah, all the subsequent chronograph readings were 1220 to 1230. Nice.
Also nice was the way the compensator changed the character of the recoil: it was still stout, but there was significantly less muzzle flip. We all shot the gun through at least a full magazine (13 rounds) and agreed – it was faster and easier to re-acquire your target with the compensator, and the gun took less man-handling to control. The recoil was, as noted, still stout, and felt different than the slow push of shooting a .45 ACP out of the Glock. It was probably closer to shooting a 10mm.
The 460Rowland.com site touts a Nosler 185 grain JHP “carry ammo” and claims that it achieves 1550 fps. I haven’t tested it, but I’d believe it. And if so, you’re talking a whopping 987 foot-pounds of energy out of the thing. That puts it beyond the 10mm. Beyond the .41 Magnum. That puts you pretty solidly into .44 Magnum territory. Even the 230 grain round we tested has a respectable 766 foot-pounds of energy – compared to 526 for the same weight bullet out of a .45 ACP +P.
A little suggestion…
I said it before and I’ll repeat it here: if you carry a .45, you should instead be carrying a .460 Rowland.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Oh, boy.
Time for a serving of Crow: I now seldom recommend that people make the full switch to .460 Rowland.
As I have previously noted, I have now changed over to using the .45 Super cartridge rather than the .460 Rowland because the .45 Super offers most of the benefits of the .460 Rowland without some of the disadvantages. But I have kept the conversion kit in place because it gives me more flexibility in ammo selection and more control of the gun. And since I don’t carry the G21, the extra mass/length of the compensator doesn’t make a difference in day-to-day use.
So, yeah.
“Disadvantages” to the .460 Rowland? Well, I could never get my G21 to stop chewing up mags when shooting full-power .460 Rowland out of it. And the recoil could be … daunting, even for me (I’m not particularly recoil sensitive). I couldn’t ever share ammo with someone who had ‘just’ a .45 (the .460 case is slightly longer, and won’t chamber) — which is good (and intentional), because a lot of guns can’t handle the extra power of the .460 Rowland.
Now, the .460 Rowland definitely IS more powerful than the .45 Super out of handgun-length barrels. By a couple hundred foot-pounds of Muzzle Energy. That’s about the power difference of the .45 Super over the .45 ACP +P. But the .45 Super beats pretty much every other common handgun cartridge except the .460 Rowland and .44 Magnum.
You have to decide for yourself what trade-offs to make. But do so in an informed way. Look at the numbers. Try guns set up to shoot the different cartridges if at all possible — I often will stage my G21 to shoot three rounds each of .45 ACP, then .45 Super, then .460 Rowland so people can try the three rounds head-to-head. And usually they decide that .45 Super is more than sufficient.
Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 2/15/2012. Images used are from that original article. Some additional observations at the end.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
“It’s a toy!” Is what I am tempted to say about the Kel Tec Sub-2000. It is small. It is light. It is mostly plastic. And it folds in half. It’s a toy—except it isn’t. No real firearm is, so it’s most definitely NOT a toy. But it is as much fun as about any toy I remember from my childhood.
But it is not what you’d call a “high-end” firearm. The fit and finish are only OK. It wins no points on attractiveness. Accuracy is acceptable, but not much more. It has some operating quirks you have to watch out for. It is prone to annoying (but easy to correct) jams.
But I love this little carbine. Have since I first got one, in 9mm, several years ago.
There are a lot of decent reasons to have a pistol caliber carbine. You can find my article discussing them here but briefly they are: about 15 percent increased power out of the same ammunition*, much better sight radius for increased accuracy, reduced recoil and good ergonomics, and handling the same ammo as your pistol.
With the Sub-2000 you get all of these, plus a gun that seems to be well made for a decent price and that folds in half. Yeah, that’s right: you pull on the trigger guard, and the barrel hinges upwards. It closes on itself, locks in place, and you have a carbine that’ll fit into a pizza box or a laptop bag. When you want to use it, just release the locking mechanism, unfold it, and it snaps solidly back into being a carbine. That’s just cool.
And while the Sub-2000 isn’t a gun made for target shooting, it’ll stay in the black at 50 yards, being shot unsupported. With support, 100 yards isn’t too much for it, either. This is with the standard simple peep sights (front sight is adjustable).
You’re not talking MOA accuracy, but you can easy pop tin cans out to 50 yards when you’re just wanting to have fun.
Operation is easy, and dis-assembly a cinch for cleaning.
What’s not to like? Well, it’s a simple blow-back mechanism, and the charging/operating handle is on the bottom of the stock where it can snag clothing. The bolt does not lock back on an empty magazine.
Mine does sometimes jam, usually a “failure to eject” spent cases completely, sometimes a “failure to feed” new cartridges. Yet, it’s usually easy to clear such jams with a cycle of the operating handle, but you do have to take a moment to do it.
The Sub-2000 is so short that I added on a stock extension, but it still feels a bit cramped for my long arms. And it can be a bit tough when wearing hearing muffs to get down behind the rear sight well enough to get a good sight picture.
This is not a gun that will impress your friends with its craftsmanship and fine detail. But it is decently made, and works.
A buddy of mine who was the armorer for his PD SWAT team liked shooting mine so much, he got one for himself, and loves it – and this is a guy used to handling and shooting the best of the sub-guns available. I think that says a lot right there.
I love it, even though it’s a bit of a mongrel – not entirely one thing or another. The quality could be a bit better. But I love it. I’d buy another in an instant.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since I wrote that, Kel Tec has come out with a “Gen 2” model which has gotten pretty good reviews. The changes seem to be mostly a better sight (which wouldn’t be hard) and more ways to mount accessories. I haven’t tried one yet, but I wouldn’t have any qualms about buying one if a deal came my way.
I continue to really enjoy this little gun, and still everyone who tries it thinks it’s entirely too much fun. And the fact that I can transport it (and additional mags) in a standard business briefcase seldom fails to amuse people at the range.
Now about the * concerning ammunition performance: the 15% increase in performance is typical for 9mm or .40 S&W, the two cartridges for which the Sub2000 is chambered. It also applies to .357 Sig, 10mm and .45 acp — other fairly common pistol caliber carbines. But it doesn’t apply to any of the ‘magnums’: .327, .357, .41, or .44. And as I’ve noted previously, it doesn’t apply to the .45 Super cartridges, which behave much more like a true magnum.
Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 12/26/2011. Images used are from that original article. Some additional observations at the end.
Beretta has been around forever, and they have more than a little experience in making firearms for a very wide range of applications. They designed the CX4 (and the MX4 military version) to be lightweight yet reliable for personal defense and sporting purposes. For this use, it is ideal.
Right out of the box the CX4 Storm is fairly basic, but offers a huge range of personalization possibilities. It’s easy to adjust the overall length of pull, to accommodate both those who have shorter arms and for apes like me. It has a Picatinny rail on the top for optics, one on the side for whatever, and one on the foregrip, which can be extended out under the barrel. Additional rails can be added at several locations, and you can load this gun down with enough tacticool stuff to make a mall ninja drool.
Standard sights include a front post, which is adjustable with a provided tool, and a rear sight with two apertures – a smaller one for long range/accuracy and a larger one for quick target acquisition. Both sights fold down and out of the way if you want to put a different kind of optics on the top rail.
One very nice feature is that the gun is designed to be easily converted from right-hand to left-hand use. The magazine release, the safety, the ejection port are all reversible with minimal gunsmithing skills, and most buyers can probably do the change themselves without difficulty.
The gun is also very ergonomic – which makes it easy to shoot it well. First time I picked it up I put all eight rounds (I was shooting the .45 ACP model) into a ragged hole less than an inch across at 25 yards. This is one of the main reasons that I like PCCs – the increased stability and sight radius of a carbine, combined with minimal recoil, make them very easy for even a novice to shoot well. The CX4 Storm is light enough (under six pounds) to not be wearying, yet heavy enough to absorb the recoil of .45 ACP rounds without any problem whatsoever. Part of the ergonomic design is the balance of the carbine, which helps it to point naturally as well as allow moving easily with it.
As you would expect with a firearm made by Beretta, the quality is top notch. Fit and finish are excellent – there are no rough spots or small gaps, no problems with the magazine seating properly, no difficulty with the charging handle or safety that I experienced, though others have reported some problems getting the safety to engage/disengage in the past. The specs for the gun state that it has a hammer-forged and chrome-lined barrel for long life and easy cleaning. All in all, it feels solid and gives you confidence that it will last for many years.
At $915, the MSRP is higher than you’ll pay for many other good quality pistol-caliber carbines, but it is not outrageous and you know you are getting a firearm you can trust (or depend on the manufacturer to stand behind if you have any problem.) And new ones can be found for around $700, as well as good used ones for a significant discount.
Bottom line: the Beretta CX4 Storm is a fine gun, which does everything it is designed to do, and there’s a good reason why most owners love them. If you get a chance, give one a try in your favorite caliber.
Look particularly at the backstrap: it’s now almost complete straight. My buddy took off most of the swell towards the bottom of the strap using a rasp and then sandpaper. He has little, meaty hands, and this change allows him to get much better purchase on the gun, with much better trigger position. He’s also planning on increasing the undercut on the trigger guard to accommodate his finger better.
Personally, the straight backstrap made it more difficult for me to get a good grip on the gun, and shooting the +P+ ammo out of it was downright painful for me, while the same ammo out of the unaltered G43 was just mildly annoying. The owner of the standard G43 didn’t have a problem with either ammo, and it was clear that my friend with the altered G43 was *much* more comfortable shooting it than the standard version.
So if you’ve ever thought about adjusting the grip of a Glock to better suit you, know that there are options out there which might be worth exploring.
After those tentative explorations in altering his G43, my friend decided to see what changes he could make to a couple of his other Glocks.
Now, before I go any further, some caveats: these changes probably ruin any warranty on the guns; they probably shorten the expected lifespan of the gun; and they may very well increase the chance that the gun would fail in normal use and injure the shooter. And they may give Glock purists reason to faint dead away, just looking at them. So DON’T DO THIS; if you do insist on doing this you do it at YOUR OWN RISK; and DON’T EVEN READ FURTHER if you are a Glock purist with a weak stomach.
Still with me? Then read on …
As I said, my friend has little, meaty hands, and even the small G43 presented a problem for him in gaining a good secure grip. So both his G36 and his G21 presented an even greater challenge.
Or, putting it a different way, they presented an even greater opportunity for some experimental alteration, thanks to the polymer construction of the Glock frame. Take a look:
G36 top, G21 bottom.
See how straight the backstraps are? The G21 has been taken all the way back to the box of the mag well. The G36 still has some of the backstrap, but it has been removed enough that the normal ‘void’ had to be filled in. The same is true of the G43, which he continued to alter from the initial experiment back in August. If you look at the back of the guns, you can see the grey filler material (PC7) he used:
G36 on top, left. G43 on right. G21 on bottom, left.
Also note that on each of the guns he had to trim out a bit of the bottom of the mag well on the back, because there was part of the mag well which extended down and would bite into the palm of his hand. You can see this part of the mag well in the very first image above.
To get a sense of just how much of a change he has made to the G21, compare it to my G21 on the right. It still has the original backstrap configuration, but with an added slip-grip to better fit my hand and tame the recoil of .45 Super and .460 Rowland loads:
Big difference, eh?
And it felt like it. I shot each of his guns, at least a full mag each, to see how the altered guns would fit my much larger (and less muscular) hands. Both the G43 and the G36 felt a little cramped in my hand, but were comfortable enough for a single mag of ammo. The much more altered G21 has a fairly sharp ridge where the back of the mag well dug into my palm. My friend also feels this, and is planning on trying to add a slip-grip to deal with it. If that doesn’t work, he can sculpt some PC7 along that edge to soften it.
Now, this kind of alteration isn’t something I recommend. It won’t work for everyone, and as noted it has some real downsides. But for my friend, it has finally allowed him to really get a proper fitting Glock in these three different models. It’s made a big difference in his comfort and accuracy shooting, and he is at peace with the possible downsides.
So if you have an unusual hand size or shape, it might be something to consider. All you really need is a file/rasp and some sandpaper … and nerves of steel.
I recently came across a really good sale on a Trijicon RMRreflex sight, and decided to take the plunge and add it to my Glock 21. I had handled and shot some other competition handguns with a reflex set-up, but I hadn’t yet tried one on a more-or-less stock gun intended for routine use, and wasn’t sure how well it would work or how I would like it.
My G21 had been set up to handle the .460 Rowland cartridge, complete with compensator, so it wasn’t exactly stock. You can see it here:
Converted G21 on left, G30S on right.
As I have previously noted, I have now changed over to using the .45 Super cartridge rather than the .460 Rowland because the .45 Super offers most of the benefits of the .460 Rowland without some of the disadvantages. But I have kept the conversion kit in place because it gives me more flexibility in ammo selection and more control of the gun. And since I don’t carry the G21, the extra mass/length of the compensator doesn’t make a difference in day-to-day use. Thinking along those lines, I figured that adding a reflex sight to the G21 wouldn’t cause a problem, and might make it an even better home defense firearm.
So along with the RMR I got an adapter plate which just slides into position where the rear sight of the Glock mounts. Mounting the optic just took a few minutes and no special tools other than a light hammer and brass punch. Here’s the result:
And this morning I had a chance to take it out to the range for testing, to see what I thought of it.
I like it. A lot.
It took a little getting used to, since I have about 50 years of shooting experience which has conditioned me to always look for the front sight on a gun, and place that on the target. The RMR sticks up too much for that to work well, and if you can see the front sight through the RMR you probably won’t see the red dot. Rather, you have to tilt the front of the gun down for the red dot to appear. This actually puts the gun back to the normal position you shoot it in, but you’re just looking above the front sight — parallel to the slide, as it were.
The RMR I got was the one with the 6.5 MOA dot, which I figured would be easier and quicker to get on target even if I wasn’t wearing my glasses, and would give me adequate accuracy at any distance I was likely to use the gun (say 25 yards or less). At 10 yards distance at the range, the dot appeared to be about half-an-inch across, perhaps a bit more. For my purposes this was more than accurate enough to knock down steel plates consistently. As I get more used to the RMR, moving out to 25 yards should give similar results.
Now that I’ve tried it on this gun, I can understand why others have decided to have a mount for the RMR milled into the slide of their gun. That would bring down the location of the dot and make everything more consistent with previous shooting experience. It would also make the gun more compact and more suitable for either duty or concealed carry. I doubt that I will go to the trouble or expense to have this done on the G21, but it is something I would consider for the G30S shown above, particularly if the next generation of reflex sights are even more compact and suitable for a handgun. It’s something to think about, anyway.
Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 3/8/2012. Some additional observations at the end.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OK, we’re all adults here. I think that the time has come to talk about something a little filthy, something that has plagued shooters for decades and something we need to put a stop to, for the good of all of us gun owners. The time has come to clean up our act and get rid of all of our dirty magazines.
No, not *that* kind of dirty magazine (jeez – get your mind out of the gutter!). I’m talking about the kind of magazine that goes into your firearm. Sheesh.
Now, be honest: when was the last time you inspected and cleaned out your magazines? I mean took them apart and cleaned them thoroughly inside and out? Examined the parts for unusual wear? And then lubed ‘em properly with gun lube before putting them back together?
Seriously, this is one of those details that a lot of people just never think about: that to function properly, a semi-auto firearm (or a select-fire one, for that matter) needs a working magazine and while the magazine is usually a pretty simple component of a pistol, it too needs to be cleaned and maintained regularly (just like any other mechanical component of your gun). Otherwise it can impede smooth functioning of your firearm, and that can lead to very bad things called “weapons malfunctions” and “failures to feed”. Which can lead to the dreaded “oops, I’m dead” problem in a self-defense situation.
Happily, almost all modern handguns magazines have been designed so that the average person can disassemble and then easily reassemble them, though over the years I have known plenty of people who either didn’t know this or didn’t care (or really just forget to check/clean their magazines regularly).
Magazine Components
Some terminology before we go any further. Your typical magazine has four main parts:
Body – this is the overall housing.
Spring – the internal part that pushes cartridges up into the pistol.
Follower – a small metal or plastic plate on top of the spring which guides cartridges.
Floor plate – the bit at the bottom of the body that holds the spring and follower in place.
One other part I want to mention, though it is not a ‘component’ is the (feed) lips. This is the upper part of the magazine body that helps to position cartridges properly within the pistol so that they can be transferred from the magazine into the chamber of the gun. Sometimes these can become pinched, which could lead to failure to feed.
Taking apart Your Magazine
The good news is you should be able to disassemble most if not all pistol magazine designs out there. The bad news is that methods for this vary according to the style of magazine (i.e. Glock versus Colt 1911 magazines), so you should definitely consult your manufacturer’s instructions before attempting to take one of your handgun magazines apart. In general though, here’s how you do it:
Remove all the cartridges from your magazine.
Examine the magazine, looking for obvious wearing or breakage (rare, but it happens).
Look at the floor plate. There should be some variety of clip or clasp that keeps it in place and it might need a small part to be moved, or a little spring latch tripped (usually with a small rod or nail).
Slide off the bottom of the body once you remove the floor plate. Be careful when doing this, since the spring inside the magazine will be under some pressure and may want to shoot out (finding this smaller piece once its been lost can be a challenge too).
Take out the spring and follower from the bottom of the magazine. The follower may be mounted to the top of the spring, or it may be free and just held in place by spring tension. Try to pay attention to this as you remove the spring.
Cleaning
Now that your magazine is completely disassembled, you should be able to look up inside the body and see out the top where the lips are located. The interior sides of the body are where dirt can accumulate. This can interfere with the smooth movement of the follower. It can also retain moisture, and that can cause rusting. Here’s how you should proceed:
Clean the inside of the body thoroughly, using your usual gun cleaners and tools.
Look at the top of the body, where the lips are. Make sure that these are cleaned inside and out as well.
Examine the spring, checking for built-up dirt or rust. Wipe down with a rag & some cleaner, then lubricate lightly.
Do the same for the follower and floor plate.
Lightly lubricate all surfaces.
Now you’re ready to reassemble the magazine. Just reverse the steps for taking it apart, being careful that the follower and spring go in correctly (this matters on many, but not all, magazines). Hold the spring in place and snap the floor plate back into position.
Check the magazine to make sure that the follower moves freely when under pressure, and that the empty magazine fits back into the gun properly, and locks into place. Now you’re ready to use it again.
Words of Wisdom
There are two additional items I want to mention. One, and this is a discussion that comes up frequently in firearms forums, is whether you will hurt the springs in a magazine by leaving the magazine full of ammunition. Everything I know about springs, and every engineer I’ve ever talked with about this, both say “no.” It should be perfectly safe to load a magazine fully, put it into proper storage, and then leave it for years without causing a problem.
And two, I no longer “top off” my magazines. “Topping off” is where you fill a magazine, place it into a pistol, then chamber a round, and then remove the magazine and place another cartridge into the magazine before replacing it. You’ll see a lot of people refer to a given gun as “10 + 1″ or “14 + 1″. This is what they mean, and it is tempting to do in order to have an extra cartridge.
I used to do this regularly and usually I didn’t have any problems with my various pistols when I did. But every once in a while I’d get a failure of a gun to cycle properly after the first shot. I discussed it with friends, and one buddy who is an armorer for a SWAT team said that he’d stopped “topping off” for his department, and that it eliminated these rare but occasional problems. His theory was that the additional pressure of a completely full magazine on the underside of the bolt/slide operating mechanism slowed it down just enough to mess up the timing of the gun when it was fired, and so presented a problem.
Since I’ve adopted the practice of regularly cleaning my gun and filling my magazine only to capacity, I haven’t had any feeding problems and, if only for my own peace of mind, I’ve just made it my routine. Personally, I’d much rather have a gun which will reliably shoot the second round than have ‘one extra’ round in the mag. Your preference, like your mileage, may vary.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
About eighteen months after I wrote the above, I ran into some unexpected problems with mags for my Glock 21, which I had upgraded to handle the .460 Rowland cartridge. The whole thing is discussed here, but basically what was happening was that the additional power/speed of the .460 Rowland was causing damage to the front of the body of the magazines I was using. To the best of my memory, this is the first time I had actually had this kind of problem with a firearm. Had I not had this article still kicking ar0und in my head, it might have taken me even longer to sort out what was going on. (Now that I have shifted over to using .45 Super instead of .460 Rowland, I haven’t had any subsequent problems with this.)
I don’t take apart and clean my magazines after every trip to the range. But I try to remember to do it after a couple of trips, and that seems sufficient.
I have also learned the wisdom of cleaning *new* mags when I first get them (or when I buy a new firearm) — they’re often surprisingly dirty, and on a couple of occasions I have found mild corrosion on either the spring or inside the body of the magazine, because they had been stored in improper conditions or there was a minor problem with their manufacturing process. So, it doesn’t hurt to check.
Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 2/13/2012. Some additional observations at the end.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Would you rather be shot with a modern, Jacketed Hollow Point bullet from a .32 ACP or have someone throw a baseball at you? Seems like a silly question, doesn’t it? But did you know that the ‘muzzle energy’ of the two is about the same? Seriously, it is and that’s just one reason why trying to use muzzle energy as a measurement of handgun effectiveness is problematic.
Muzzle energy is the kinetic energy of a bullet as it is expelled from the muzzle of a firearm. It is often used as a rough indication of the destructive potential of a given firearm or load. The heavier the bullet and the faster it moves, the higher its muzzle energy and the more damage it will do.
For those who are trying to remember your high school physics, kinetic energy is the energy (or power) of something moving. You can calculate kinetic energy using the classic formula:
E = 1/2mv^2
Which is just mathematic notation for “Energy equals one-half the mass of an object times the square of its velocity.”
Doing the actual calculations can be a bit of a pain, since you have to convert everything into consistent units, but the formula is there on the Wikipedia page (and can be found elsewhere) if you want to give it a go. Fortunately, there are a number of websites out there which will calculate muzzle energy for you – you just plug in the relevant numbers and out comes the result. We also have muzzle energy graphs for all the calibers/ammunition tested at BBTI.
Batter up?
If you go through and check all the muzzle energy numbers for handguns with a 6″ or less barrel which we’ve tested (BBTI that is), in .22, .25. or .32, you’ll see that all except one (and you’ll have to go to the site to see which one it is) comes in under 111 foot-pounds.
Why did I choose that number? Because that would be the kinetic energy of a baseball thrown at 100 mph. Check my numbers: a standard baseball weighs 5.25 ounces, which is about 2,315 grains. 100 mph is about 147 fps. That means the kinetic energy of a baseball thrown at 100 mph is 111 ft-lbs.
Now, we’re not all pro baseball pitchers. And I really wouldn’t want to just stand there and let someone throw a baseball at me. But I would much rather risk a broken bone or a concussion over the damage that even a small caliber handgun would do.
The Trouble with Muzzle Energy
And therein lies the problem with using muzzle energy as the defining standard to measure effectiveness: it doesn’t really tell you anything about penetration. A baseball is large enough that even in the hands of Justin Verlander it’s not going to penetrate my chest and poke a hole in my heart or some other vital organ. If I catch one to the head, it may well break facial bones or even crack my skull, but I’d have a pretty good chance of surviving it.
Now, I think muzzle energy is a useful measure of how much power a given handgun has. That’s why we have it available for all the testing we’ve done on BBTI. But it is just one tool, and has to be taken into consideration with other relevant measures in order to decide the effectiveness of a given gun or caliber/cartridge. Like measures such as depth of penetration. And temporary and permanent wound channels. And accuracy in the hands of the shooter. And ease of follow-up shots. And ease of carry.
I’ve seen any number of schemes people have come up with to try and quantify all the different factors so that you can objectively determine the “best” handgun for self defense. Some are interesting, but I think they all miss the point that it is an inherently subjective matter, where each individual has to weigh their own different needs and abilities.
Sure, muzzle energy is a factor to consider. But I think the old adage of “location (where a bullet hits) is king, and penetration is queen” sums it up nicely.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the five years since I wrote that, my thinking has evolved somewhat. Well, perhaps it is better to say that it has ‘expanded’. I still agree with everything above, but I’m now even more inclined to go with a relatively heavy bullet for penetration over impressive ME numbers. I think that comes from shooting a number of different brands of ammo where the manufacturer has chosen to go with a very fast, but very light bullet to get an amazing ME, with the argument that this is more likely to cause some kind of terminal shock, citing tests showing significant ‘temporary wound channels’ and such in ballistic gel.
But you really can’t cheat physics. If you dump a lot of kinetic energy very quickly into creating a temporary wound channel, then you have less energy for other things. Like penetration. Or bullet expansion. And those are factors which are considered important in how well a handgun bullet performs in stopping an attacker. That’s why the seminal FBI research paper on the topic says this:
Kinetic energy does not wound. Temporary cavity does not wound. The much discussed “shock” of bullet impact is a fable and “knock down” power is a myth. The critical element is penetration. The bullet must pass through the large, blood bearing organs and be of sufficient diameter to promote rapid bleeding. Penetration less than 12 inches is too little, and, in the words of two of the participants in the1987 Wound Ballistics Workshop, “too little penetration will get you killed.” Given desirable and reliable penetration, the only way to increase bullet effectiveness is to increase the severity of the wound by increasing the size of hole made by the bullet. Any bullet which will not penetrate through vital organs from less than optimal angles is not acceptable. Of those that will penetrate, the edge is always with the bigger bullet.
Now, you can still argue over the relative merits of the size of the bullet, and whether a 9mm or a .45 is more effective. You can argue about trade-offs between recoil & round count. About this or that bullet design. Those are all completely valid factors to consider from everything I have seen and learned about ballistics, and there’s plenty of room for debate.
But me, I want to make sure that at the very minimum, the defensive ammo I carry will 1) penetrate and 2) expand reliably when shot out of my gun. And if you can’t demonstrate that in ballistic gel tests, I don’t care how impressive the velocity of the ammo is or how big the temporary wound cavity is.
So I’ll stick with my ‘standard for caliber’ weight bullets, thanks. Now, if I can drive those faster and still maintain control of my defensive gun, then I will do so. Because, yeah, some Muzzle Energy curves are better than others.
Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 3/26/2011. Some additional observations at the end.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In an earlier article, when I said you’d get about a 15% increase in bullet velocity when using a pistol caliber carbine over a handgun, I lied.
Or, rather, I was neglecting one particular class of pistol ammunition which can develop upwards of a 50% increase in velocity/power in a carbine over a handgun: the “magnums,” usually shot out of a lever-action gun. This would include .327 Federal Magnum, .357 Magnum, .41 Magnum, and .44 Magnum.
These cartridges are rimmed, initially developed as powerful handgun rounds, and have their origins in black powder cartridges. This history is important for understanding why they are different than most of the other pistol cartridges and the carbines that use them.
We’ll start with the .357 Magnum, the first of these cartridges developed.
Back in the 1930s a number of people, Elmer Keith most notable among them, were looking to improve the ballistic performance of the .38 Special cartridge. This had been a cartridge originally loaded with black powder. Black powder takes up a lot of space – typically two to four times as much space as smokeless powder of a similar power. Meaning that when people started loading .38 Special cartridges with smokeless powder, the cartridge was mostly empty.
Now, if you were looking to get more power out of a .38 Special, and you saw all that unused space in the cartridge, what would be the obvious thing to do? Right – add more smokeless powder.
The problem is, many of the handguns chambered for the .38 Special using black powder were not strong enough to handle .38 Special cartridges over-charged with smokeless powder. And having handguns blowing up is rough on the customers. Heavier-framed guns could handle the extra power, but how to distinguish between the different power levels and what cartridge was appropriate for which guns?
The solution was to come up with a cartridge, which was almost the same as the .38 Special, but would not chamber in the older guns because it was just a little bit longer. This was the .357 Magnum.
There are two important aspects of the cartridge as far as it applies to lever guns. One is just simply the ability to use more gunpowder (a typical gunpowder load for a .357 magnum uses about half again as much as used in a .38 Special.) And the other is that you can get more complete combustion of the gunpowder used, perhaps even use a much slower burning gunpowder. This means that the acceleration of the bullet continues for a longer period of time.
How much of a difference does this make? Well, from the BBTI data for the .357 Magnum, the Cor Bon 125gr JHP out of a 4″ barrel gives 1,496 fps – and 2,113 fps out of an 18″ barrel. Compare that to the .38 Special Cor Bon 125gr JHP out of a 4″ barrel at 996 fps and 1,190 fps out of an 18″ barrel. That’s a gain of 617 fps for the .357 Magnum and just 194 fps for the .38 Special. Put another way, you get over a 41% improvement with the Magnum and just 19% with the Special using the longer barrel.
Similar improvements can be seen with other loads in the .357 Magnum. And with the other magnum cartridges. And when you start getting any of these bullets up in the range of 1,500 – 2,000 fps, you’re hitting rifle cartridge velocity and power. The low end of rifle cartridge velocity and power, but nonetheless still very impressive.
There’s another advantage to these pistol caliber lever guns: flexibility. Let’s take that .357 again. On the high end of the power band, you can use it as a reliable deer-hunting gun without concern. But if you put some down-loaded .38 Special rounds in it, you can also use it to hunt rabbit or squirrel. I suppose you could even use snake/rat shot loads, though most folks don’t recommend those loads due to concerns over barrel damage. Shooting mild .38 Special loads makes for a great day just plinking at the range.
One thing that I consider a real shame: you can get good quality lever guns for the .357, the .41, and the .44 magnums. But to the best of my knowledge, no one yet makes a .327 Magnum lever gun. I would think that such a gun would meet with a lot of popularity – properly designed, it should be able to handle the .327 Federal Magnum cartridge, the .32 H&R cartridge, even the .32 S&W Long. Again, with the right powder loads, this would give the gun a great deal of flexibility for target shooting and hunting small to medium sized game/varmits.
So, if you like the idea of having a carbine in the same cartridge as your handgun, but want to be able to maximize the power available to you, think about a good lever gun. It was a good idea in the 19th century, and one that still makes a lot of sense today.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some additional thoughts …
I’m still a little surprised that no manufacturer has come out with a production .327 mag lever gun, though occasionally you hear rumors that this company or that company is going to do so. But I must admit that as time has gone on I’ve grown less interested in the .327 cartridge, since firearms options are so limited — definitely a chicken & egg problem.
One very notable absence from the above discussion is the .22 WMR (.22 Magnum), for the simple reason that we hadn’t tested it yet when I wrote the article. You can find a later article about it here.
Something I didn’t address when I wrote the article initially was ammunition which was formulated to take greater advantage of the longer barrel of a lever gun. Several manufacturers produce such ammo, perhaps most notably Hornady and Buffalo Bore. A blog post which includes the latter ammo out of my 94 Winchester AE can be found here, with subsequent posts here and here.
And lastly, there’s another cartridge we tested which really should be included in the “magnum” category, because it sees the same increasing power levels out to at least 18″ of barrel: .45 Super. This proved to be more than a little surprising, since it is based on the .45 ACP cartridge. Most semi-auto firearms which shoot the .45 ACP should be able to handle a limited amount of .45 Super, but if you want a lever gun set up to handle the cartridge you’ll have to get it from a gunsmith.
My friends over at the Liberal Gun Club asked if they could have my BBTI blog entries cross-posted on their site. This is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 3/7/2011. Some additional observations at the end.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
“What is the best barrel length?”
It’s a question I get a lot, thanks to my involvement in Ballistics By The Inch. And invariably, I say in response: “it depends.” As in, it depends on what you’re going to use it for.
OK, first thing: I’m talking about pistol cartridges, not rifle cartridges. Got that? Pistol cartridges.
That’s what we studied with our BBTI project (actually, continue to study, since we’ve done several expansions of the cartridges and ammunition tested already, and have another big expansion coming up the beginning of May.) Now that we’ve cleared that up . . .
Different barrel lengths are good for different purposes. The longer the barrel, the longer the sight radius, and so the easier it is to be accurate with the gun. The shorter the barrel, the easier it is to conceal.
And barrel length has an effect on the velocity of a bullet (and hence the power of that bullet.) How much of an effect? Well, it depends.
No, seriously, it depends. Do not believe it when someone tells you “oh, the rule of thumb is about 75 (or 25 or 100 or any other number) feet per second for each inch of barrel.” That number may be right for one given ammunition in one given gun for one given inch of barrel length – but it will not hold true as a general case. Don’t just take my word on this – look at the actual numbers from tests we conducted, using almost 10,000 rounds of ammunition. You can go to the BBTI site and see the data for yourself (it’s all free, with no advertising or anything), but here are two examples:
Cor Bon 165gr JHP +P .45 ACP ammo was tested at 1001 fps with a 2″ barrel. That jumps to 1050 fps with a 3″ barrel, or an increase of about 50 fps. Going to a 4″ barrel you get 1163 fps, or an increase of 113 fps. But when you go from an 10″ barrel to a 11″ barrel, you only get an increase of 23 fps.
Let’s look at Federal Hydra-Shok 230gr JHP .45 ACP. It starts at 754 fps with a 2″ barrel, and jumps to 787 fps out of a 3″ barrel – an increase of 33 fps. Go to the 4″ barrel and it tested at 865 fps – an increase of 78 fps. And when you go from an 10″ barrel to a 11″ barrel, you only get an increase of 4 fps.
Do you see my point? It not only varies by ammunition, it also varies by which inch of the barrel you are talking about – the inch between 3 and 4 sees a lot more increase than the inch between 10 and 11.
Almost all handgun cartridges show this effect, and it makes sense: pistol cartridges use a fast burning powder, but it still needs a little bit of time to completely combust. The highest acceleration comes at first, and then usually handgun bullets plateau out somewhere between 6″ and 10″, with little additional velocity with longer barrels past that point. The graph of our first example shows this very well:
Some cartridges even show velocity starting to drop off with longer barrels, as the friction of the bullet passing through the barrel overcomes any additional boost from the gunpowder. Notably, the “magnum” cartridges (.327, .357, .41, and .44) all show a continued climb in velocity/power all the way out to 18″ of barrel length (the maximum we test), though the amount of increase tends to get smaller and smaller the longer the barrel.
So, back to “it depends”: if you want a lever-gun or carbine, which uses a pistol cartridge, you’re best off using one of the magnums if you want maximum power. If, however, you want to use a carbine for an additional power boost and better aiming, one with a barrel length somewhere in the “plateau” for a given cartridge makes sense (and this is why subguns typically have barrels in the 8 – 10″ range).
For a hunting pistol, you probably want to have a barrel of 6″ to 8″ to get a lot of the additional power and still have it manageable. This barrel length will also give you a nice big sight radius for accuracy, making it good for hunting or target shooting.
How about for concealed carry? The shorter the barrel, the better, right? Well, if you look through all our data, you’ll see that usually, most cartridges see the greatest jump in velocity (and hence power) from 2″ to 4″. Now, the smaller the caliber and the lighter the bullet, the more the big jump tends to come right up front – from 2″ to 3″. The larger the caliber and the heavier the bullet, the more it tends to come a little later, from 3″ to 4″. Still, you can decide for yourself whether the trade-off in less power for ease of carry is worth it.
And good news for the revolver fans: because the cylinder basically functions to extend the barrel, your 2″ snubby actually functions more like a gun with a 3.5″ – 4″ barrel. Though there is some velocity/power loss due to the cylinder gap. How much loss? That is actually the next thing we’ll be testing, but I’d bet that . . . it depends.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since I wrote that six years ago, we’ve done a LOT more testing at BBTI, and have now shot more than 25,000 rounds and greatly expanded our data. The cylinder gap tests mentioned above did indeed show that the amount of loss did vary according to a number of factors, but for the most part established that the effect wasn’t as large as many people thought. And we found an interesting exception to the “magnum” rule in one of our most recent tests: it turns out that the .45 Super cartridge behaves like a true magnum, by continuing to gain more power the longer the barrel, until at carbine lengths it is on a par with (or even exceeds) the .460 Rowland cartridge. Since the .45 Super is based on the .45 ACP cartridge, we expected it to perform like that cartridge and level off at about 10″, but it clearly continues to gain out to at least 18″.
I also want to add a couple of quick comments about how concealed-carry guns have changed, though this is more just personal observation than any kind of rigorous research. I think that as concealed-carry has continued to expand, more gear is on the market to make it easier to do, and I think for that reason some people are able to carry slightly larger guns and there are more guns available with barrel length in the 4″ – 5″ range. In addition, sight/optics/laser options have continued to improve, making simple sight radius less of a factor — meaning that for those who do want to carry a smaller gun, it is easier to use it well (though having better sights/optics/lasers is NOT a substitute for practice!) I expect that both these trends will continue.
A quick recap of the last year: surprisingly active.
It’s interesting to see how things have evolved with BBTI over time. The last test sequence we did was the .45 Super /.450 SMC tests, with the data published in October 2015. So without new test results last year, we didn’t have the usual big spike in site visits. But we still saw a total of 447,203 visitors last year, which ain’t too shabby.
And last year we saw an evolution in who were our biggest referrers, as well. Excluding search engines, here they are in order:
All but four (Guns.com, MechTech Systems, Wikipedia, and The Firearm Blog) are discussion forums, and of those four The Firearm Blog also has a very active discussion community. MechTech Systems sells conversion kits for pistols, allowing you to turn your pistol into a carbine, so it makes perfect sense that they would link to us showing the advantage you can gain with a longer barrel.
In other words, most of the referrers are places where BBTI is being cited as a reference to help people make decisions about their firearm choices. That just makes sense, and corresponds to the email we get, thanking us for our site or asking for clarification/recommending new ammo to test. After 8 years, and with no new tests, there’s not much reason for the ‘news’ sites to mention us — but there’s still plenty of interest in the firearms community in the data we provide.
So thanks to all who share our site with others! You’re the real reason our site is a success!
See what I see? Yeah, at 3″ and 4″ all the .45 Super loads are superior in terms of ME over all the other cartridges in the top graph. At 5″ the .357 Mag catches up with some of the .45 Super loads, and at 6″ it is in the center of the pack.
To really do the comparison right, I’d need to average all the .45 Super loads, then add them directly to the first graph, but that’s more time and trouble than I want to take. But my point is that of all the ‘conventional’ CCW-caliber/size guns, it looks like the .45 Super is at the top of the pile. We did formal testing of just one .460 Rowland, and it is comparable to the .45 Super at those barrel lengths (though I know from informal testing that some other loads are more powerful). You have to step up to full .44 Mag to beat either the .357 Mag or .45 Super.
I love my Cx4 Storm carbine, as I have mentioned and reviewed. Particularly once it was set-up to deal with the additional power of the .45 Super cartridge, it has proven to be a reliable and formidable home defense gun.
But there is ONE thing I don’t like about my Cx4: in .45 ACP/Super, the magazines only hold 8 rounds. Beretta doesn’t offer a larger capacity magazine.
Wait — let’s make that TWO things I don’t like about my Cx4: the standard magazine fits up inside the mag well, such that it can be hard to extract and may pinch your hand if you try to do a quick change of mags.
Wait again, there’s a THIRD thing: while there’s ample room for it in the composite buttstock, Beretta didn’t see fit to include storage for one or more additional magazines.
Grr.
OK, so here are some solutions I came up with to deal with these problems.
The first two problems are fixed by an after-market product which extends the standard mag by two rounds, and is designed such that it fits with the bottom of the mag well and won’t pinch your hand during a fast magazine change: Taylor Freelance Extended Magazine Base Pad. They’re not cheap, but they’re well made and work fine.
To deal with the storage problem, I picked up an inexpensive 4 pistol mag storage pouch, intended to go on a belt or MOLLE system. With three simple snap-on extensions, I was able to fit it so that it held snug to the butt of my carbine, as shown:
Here’s the back, showing the snap extensions:
And lastly, I positioned the pouch ‘upside down’, so that when the velcro tab is pulled, the mag slips out, positioned ready to insert into the carbine. As you can see:
Since I am right-handed, the mag pouch doesn’t get in my way, and it puts an extra 40 rounds immediately available such that I don’t even need to take the carbine down from my shoulder in order to quickly reload.
It’s not perfect, but it’s a good workable solution to the limitations of the Cx4. And now I love my little carbine even more.
All along, we’ve said that if someone wanted to take the time, trouble, and expense to do some additional research along the lines of our protocols, that we’d be happy to include their data on our site. This is particularly true if it helped expand the selection of “real world guns” associated with the data for a given caliber/cartridge. Well, for the first time someone has expressed an interest in doing just that, prompting us to come up with an outline of what standards we feel are required for making sure it relates to our previous tests.
The biggest problem is that ammo manufacturers may, and do, change the performance of their products from time to time. This is why we have on occasion revisited certain cartridges, doing full formal chop tests in order to check how specific lines of ammo have changed. That gives us a benchmark to compare other ammo after a period of several years have passed, and shows how new tests relate to the old data.
But without going to such an extent, how can we be reasonably sure that new data collected by others using their own firearms is useful in comparison to our published data?
After some discussion, we feel that so long as any new testing includes three or more of the specific types of ammo (same manufacturer, same bullet weight & design) we had tested previously, then that will give enough of a benchmark for fair comparison. (Obviously, in instances where we didn’t test that many different types of ammo in a given cartridge, adjustments would need to be made). With that in mind, here are the protocols we would require in order to include new data on our site (with full credit to the persons conducting the tests, of course):
Full description and images of the test platform (firearm) used in the tests. This must specify the make, model number, barrel length, and condition of the firearm. Ideally, it will also include the age of the firearm.
That a good commercial chronograph be used. Brand isn’t critical — there seems to be sufficient consistency between different models that this isn’t a concern. However, the brand and model should be noted.
Chronographs must be positioned approximately 15 feet in front of the muzzle of the firearm used to test the ammo. This is what we started with in our tests, and have maintained as our standard through all the tests.
That five or six data points be collected for each type of ammo tested. This can be done the way we did it, shooting three shots through two different chronographs, or by shooting six shots through one chronograph.
All data must be documented with images of the raw data sheets. Feel free to use the same template we used in our tests, or come up with your own.
Images of each actual box of ammo used in the test must be provided, which show the brand, caliber/cartridge, and bullet weight. Also including manufacturer’s lot number would be preferred, but isn’t always possible.
A note about weather conditions at the time of the test and approximate elevation of the test site above sea level should be included.
We hope that this will allow others to help contribute to our published data, while still maintaining confidence in the *value* of that data. Please, if you are interested in conducting your own tests, contact us in advance just so we can go over any questions.
Yesterday I took advantage of the unseasonable warmth to get out to the range and have a bit of fun & practice:
Yeah, those cans jump pretty good when popped with .45 Super rounds, particularly out of my Cx4 Storm.
Which, this time out, was a lot more fun to shoot than when I last took it out. Because I had gotten around to adding a slip-on recoil pad to it. Specifically, one of these: Pachmayr Decelerator® Slip-On Recoil Pads (Not a paid ad, and I got mine from a different seller.)
Because while you want to take steps to manage the power of a round like the .45 Super on the INSIDE of your firearm, you also have to take steps to manage the recoil you experience on your body. Or you’ll avoid practicing. Or will develop bad habits (flinching, grimacing & closing your eyes, etc). Or you’ll be spending money on painkillers, bruise ointments, and massages that you can more profitably spend on ammo/components.
While I like the overall design and ergonomics of the Cx4, the thin rubber ‘recoil pad’ it comes with doesn’t actually do much to tame the recoil, particularly out of .45 Super rounds. So I spent some time looking over different products to help with that, and settled on the Decelerator. Here’s how it looks on my gun:
And:
I was really pleased with the difference it made. Easily knocked off at least half of the felt recoil. Probably more like 3/4ths. And the added lengthening of the stock isn’t at all a problem for me with my long arms.
And of course, if one of my friends wants to prove how macho/masochistic they are, it’ll slip right off … 😉
However you do it, take into consideration how best to manage recoil in your firearms. I’m not recoil-shy. Never have been. But it just makes sense to be kind to your body over the long haul.
Jim Downey
PS: the optic is a Vortex Venom holographic red dot sight. So far, I really like it.
About 40 years ago, when I was an idiot teenager (yeah, I know — redundant, particularly in my case), we got this ’48 Willys Jeep. Since the engine was shot, we dropped an Olds V-6 in it. This was, essentially, like strapping a rocket to a skateboard. And it was too much power for idiot teenage me to handle. Twice I snapped the driveshaft on the thing, just dumping the clutch too damned quickly. Twice. My uncle (who I lived with) was certain that I had been racing or something similar. The truth was, I didn’t even have that much of an excuse; I had simply goosed the engine too much and popped it into gear too fast. The original driveshaft just couldn’t handle that much of a power spike.
This is kinda what happens to your poor .45 ACP firearm when you decide to run some .45 Super through it.
With the Jeep, we wound up putting a more robust driveshaft in it. And I learned that if I wanted to keep driving it, I needed to be less of an idiot.
This analogy holds to how you should approach handling .45 Super power out of your .45 ACP gun. Chances are, very occasional use of these much more powerful loads won’t cause any problem in a quality, modern-made firearm. But if you’re smart, you’ll either greatly limit how many times you subject your gun (and your body) to that amount of power, or you will take steps to help manage it better and extend the life of your gun.
Typical ‘standard’ (non +P) .45 ACP loads tend to have a maximum pressure of between say 15,000 PSI and about 18,000 PSI. When you get past that, you get into ‘over-pressure’, or +P territory, up to about 23,000 PSI. This is the range most common modern firearms are built to handle safely.
But .45 Super generates more chamber pressure than that. How much more? Well, it’s a bit difficult to say, since there is a surprising dearth of data readily available. Neither my 49th Edition of Lyman’s Reloading Handbook nor my 13th Edition of Cartridges of the World have data for the .45 Super. Real Guns has some reloading formulas for .45 Super which give results consistent with our tests, but there are no pressure specs listed. Hodgdon Reloading has some pressure specs (in C.U.P.), but all their listed results for .45 Super are well below what our tests results were. Wikipedia lists .45 Super as having a maximum pressure of 28,000 PSI, and given that .460 Rowland is usually considered to run 35,000 – 40,000 PSI, that is probably in the correct ballpark.
I have written previously about converting a standard Glock 21 from .45 ACP over to .460 Rowland, and what is involved with that. Specifically, a new longer barrel with a fully-supported chamber which accommodates the longer case of the .460 Rowland, a 23 pound recoil spring, and a nice compensator to help tame the recoil. I also changed out the magazine springs, using an aftermarket product which increases the spring power by about 10%. This is because even with the other changes, the slide still moves much faster than with .45 ACP loads, and the increased mag spring power helps with reliability in feeding ammo. But even with all of that, shooting full-power .460 Rowland loads tends to cause damage to my magazines (as seen in the linked post).
Do you need to do all that in order for your firearm to handle frequent use of .45 Super loads? Well, I think that if you want to use a .460 Rowland conversion kit, it *will* tame the amount of recoil more than enough, but I don’t think that it is necessary to go quite that far. I should note that I have now run several hundred .45 Super loads through my Glock 21, and the gun has operated flawlessly — WITHOUT any damage to the magazines.
Converted G21 on left, G30S on right.
Rather, I think that the smart thing to do is to start off with going to a heavier recoil spring, perhaps swapping out a metal guide rod for a plastic one (if your gun comes with a plastic guide rod). Stronger magazine springs are probably still a good idea, to aid with reliable feeding. If suitable for your gun, add in a recoil buffer. These are the steps I have taken with my Glock 30S, and am planning for my Beretta Cx4 Storm. So far I have put a couple hundred .45 Super loads through the G30S with this configuration, and it has operated without a problem — again without any damage to the magazines.
As I said in my previous blog post, I still think that the .460 Rowland is a hell of a cartridge. But I think that the .45 Super offers almost as many advantages to the average shooter, with less hassle. I would still recommend that anyone who intends on shooting more than the very occasional .45 Super loads out of their gun consider making some simple changes to handle the additional power and extend the life of their gun. Don’t be like the idiot teenage me; deal with the power intelligently.
This blog serves as a discussion forum for the website Ballistics by the Inch. It is a narrow-focus blog, only concerned with topics pertinent to the ballistics testing we did, not a general-interest gun blog (of which there are already many). We ask that you confine your questions and responses to these topics.