Ballistics by the inch

Reprise: It’s Not the Length of Your Barrel, It’s How You Use It

My friends over at the Liberal Gun Club asked if they could have my BBTI blog entries cross-posted on their site. This is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 3/7/2011. Some additional observations at the end.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

“What is the best barrel length?”

It’s a question I get a lot, thanks to my involvement in Ballistics By The Inch. And invariably, I say in response: “it depends.” As in, it depends on what you’re going to use it for.

OK, first thing: I’m talking about pistol cartridges, not rifle cartridges. Got that? Pistol cartridges.

That’s what we studied with our BBTI project (actually, continue to study, since we’ve done several expansions of the cartridges and ammunition tested already, and have another big expansion coming up the beginning of May.) Now that we’ve cleared that up . . .

Different barrel lengths are good for different purposes. The longer the barrel, the longer the sight radius, and so the easier it is to be accurate with the gun. The shorter the barrel, the easier it is to conceal.

And barrel length has an effect on the velocity of a bullet (and hence the power of that bullet.) How much of an effect? Well, it depends.

No, seriously, it depends. Do not believe it when someone tells you “oh, the rule of thumb is about 75 (or 25 or 100 or any other number) feet per second for each inch of barrel.” That number may be right for one given ammunition in one given gun for one given inch of barrel length – but it will not hold true as a general case. Don’t just take my word on this – look at the actual numbers from tests we conducted, using almost 10,000 rounds of ammunition. You can go to the BBTI site and see the data for yourself (it’s all free, with no advertising or anything), but here are two examples:

Cor Bon 165gr JHP +P .45 ACP ammo was tested at 1001 fps with a 2″ barrel. That jumps to 1050 fps with a 3″ barrel, or an increase of about 50 fps. Going to a 4″ barrel you get 1163 fps, or an increase of 113 fps. But when you go from an 10″ barrel to a 11″ barrel, you only get an increase of 23 fps.

Let’s look at Federal Hydra-Shok 230gr JHP .45 ACP. It starts at 754 fps with a 2″ barrel, and jumps to 787 fps out of a 3″ barrel – an increase of 33 fps.  Go to the 4″ barrel and it tested at 865 fps – an increase of 78 fps. And when you go from an 10″ barrel to a 11″ barrel, you only get an increase of 4 fps.

Do you see my point? It not only varies by ammunition, it also varies by which inch of the barrel you are talking about – the inch between 3 and 4 sees a lot more increase than the inch between 10 and 11.

Almost all handgun cartridges show this effect, and it makes sense: pistol cartridges use a fast burning powder, but it still needs a little bit of time to completely combust. The highest acceleration comes at first, and then usually handgun bullets plateau out somewhere between 6″ and 10″, with little additional velocity with longer barrels past that point. The graph of our first example shows this very well:

Some cartridges even show velocity starting to drop off with longer barrels, as the friction of the bullet passing through the barrel overcomes any additional boost from the gunpowder. Notably, the “magnum” cartridges (.327, .357, .41, and .44) all show a continued climb in velocity/power all the way out to 18″ of barrel length (the maximum we test), though the amount of increase tends to get smaller and smaller the longer the barrel.

So, back to “it depends”: if you want a lever-gun or carbine, which uses a pistol cartridge, you’re best off using one of the magnums if you want maximum power. If, however, you want to use a carbine for an additional power boost and better aiming, one with a barrel length somewhere in the “plateau” for a given cartridge makes sense (and this is why subguns typically have barrels in the 8 – 10″ range).

For a hunting pistol, you probably want to have a barrel of 6″ to 8″ to get a lot of the additional power and still have it manageable. This barrel length will also give you a nice big sight radius for accuracy, making it good for hunting or target shooting.

How about for concealed carry? The shorter the barrel, the better, right? Well, if you look through all our data, you’ll see that usually, most cartridges see the greatest jump in velocity (and hence power) from 2″ to 4″. Now, the smaller the caliber and the lighter the bullet, the more the big jump tends to come right up front – from 2″ to 3″. The larger the caliber and the heavier the bullet, the more it tends to come a little later, from 3″ to 4″. Still, you can decide for yourself whether the trade-off in less power for ease of carry is worth it.

And good news for the revolver fans: because the cylinder basically functions to extend the barrel, your 2″ snubby actually functions more like a gun with a 3.5″ – 4″ barrel. Though there is some velocity/power loss due to the cylinder gap. How much loss? That is actually the next thing we’ll be testing, but I’d bet that . . . it depends.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Since I wrote that six years ago, we’ve done a LOT more testing at BBTI, and have now shot more than 25,000 rounds and greatly expanded our data. The cylinder gap tests mentioned above did indeed show that the amount of loss did vary according to a number of factors, but for the most part established that the effect wasn’t as large as many people thought. And we found an interesting exception to the “magnum” rule in one of our most recent tests: it turns out that the .45 Super cartridge behaves like a true magnum, by continuing to gain more power the longer the barrel, until at carbine lengths it is on a par with (or even exceeds) the .460 Rowland cartridge. Since the .45 Super is based on the .45 ACP cartridge, we expected it to perform like that cartridge and level off at about 10″, but it clearly continues to gain out to at least 18″.

I also want to add a couple of quick comments about how concealed-carry guns have changed, though this is more just personal observation than any kind of rigorous research. I think that as concealed-carry has continued to expand, more gear is on the market to make it easier to do, and I think for that reason some people are able to carry slightly larger guns and there are more guns available with barrel length in the 4″ – 5″ range. In addition, sight/optics/laser options have continued to improve, making simple sight radius less of a factor — meaning that for those who do want to carry a smaller gun, it is easier to use it well (though having better sights/optics/lasers is NOT a substitute for practice!) I expect that both these trends will continue.

Jim Downey

March 26, 2017 Posted by | .327 Federal Magnum, .357 Magnum, .41 Magnum, .44 Magnum, .45 ACP, .45 Super, .450 SMC, .460 Rowland, Data, Discussion., Revolver | , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Reprise: So, You Say You Want Some Self-Defense Ammo?

My friends over at the Liberal Gun Club asked if they could have my BBTI blog entries cross-posted on their site. This is the second in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 2/16/2011. Some additional observations at the end.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You need to choose self-defense ammunition for your gun. Simple, right? Just get the biggest, the baddest, the most powerful ammunition in the correct caliber for your gun, and you’re set, right?

Wrong. Wrong, on so many levels.  For a whole bunch of reasons. We’ll get to that.

Shooters have earned the reputation as an opinionated breed and arguments over ammunition are a staple of firearms discussions, and have been for at least the last couple of decades. Much of this stems from the fact that every week it seems, you’ll see “fresh” claims from manufacturers touting this new bullet design or that new improvement to the gunpowder purportedly to maximize power or minimize flash.  And the truth is there have been a lot of improvements to ammunition in recent years, but, if you don’t cut through the hype you can easily find yourself over-emphasizing the importance of featured improvement in any given ammunition.

Perhaps it’s best to consider it by way of example.  While the basic hollowpoint design has been around since the 19th century, I remember when simple wadcutters or ball ammunition was about all that was available for most handguns. Cagey folks would sometimes score the front of a wadcutter with a knife (sometimes in a precarious manner—please don’t do this Taxi Driver-style with live ammunition) to help it ‘open up’ on impact. Jacketed soft point ammunition was considered “high tech” and thus distrusted. And yet, these simple bullets stopped a lot of attacks, killed a lot of people and saved a lot of lives.

I’m not saying that you don’t want good, modern, self-defense ammunition. You probably do. I sure as hell do. I want a bullet designed to open up to maximum size and still penetrate properly at the velocity expected when using it. If you are ever in a situation where you need to use a firearm for self-defense, you want it to be as effective as possible in stopping a threat, as quickly as possible.

Modern firearms are not magic wands. They are not science-fiction zap guns. How they work is they cause a small piece of metal to impact a body with a variable amount of force. That small piece of metal can cause more or less damage, depending on what it hits and how hard, and how the bullet behaves. Here’s the key that a lot of people forget: as a general rule, location trumps power.  All you have to do is meditate on the fact that a miss with a .44 magnum is nowhere  near as effective as a hit with a .25 ACP.  And when I say “a miss” I’m talking about any shot which does not hit the central nervous system, a major organ, or a main blood vessel (and even then it matters exactly which of these are hit, and how). Plenty of people have recovered from being shot multiple times with a .45. Plenty of people have been killed by a well-placed .22 round.

Hitting your target is what is most important and for most of us that is harder to do with over-powered ammunition we’re not used to shooting regularly. Chances are that under the stress of an actual encounter, your first shot may not be effective at stopping an attack. That means follow-up shots will be needed, and you’d better be able to do so accurately. If you can’t get back on target because of extreme recoil, then what’s the point of all that extra power?  If you can’t get back on target because you’ve been blinded by the flash of extra powder burning after it leaves the muzzle, well hell, that’s not good either.

Nestled up alongside power is having an ammunition that will actually work well in your gun. Some guns are notoriously ammunition sensitive and you  don’t want to just be finding out  your gun doesn’t particularly care for an ammo when you really need it to go boom. Check with others (friends or online forums) who have your type of gun, and see what ammo works for them. Then test it yourself, in your actual gun. Some people won’t carry a particular ammunition until they have run a couple of hundred rounds of that ammunition through their gun. Personally, I’ll run a box or two through the gun and consider that sufficient;  you’ll know after that if your gun generally handles  that ammunition with any problems.

So, once you have an idea of what ammunition will work in your particular gun, how do you choose between brands? As I’ve previously discussed, you can’t necessarily trust manufacturer hype. So, how to judge?

Well, you can do some research online. The fellows at The Box of Truth have done a lot of informal testing of ammunition to see how different rounds penetrate and perform. The Brass Fetcher has done a lot of more formal testing using ballistic gelatin. Ballistics By The Inch (which is yours truly’s site) has a lot of data showing velocity for different ammunition. And most gun forums will have anecdotal testing done by members, which can provide a lot of insight.

But don’t over-think this. Handguns are handguns. Yeah, some are more powerful than others, but all are compromises – hitting your target is the single most important thing. And like I said, ammunition can help, but only to a certain extent. We’re talking marginal benefits, at best, whatever the manufacturers claim. So relax;  all of the big name brands are probably adequate, and you’d be hard pressed to make a truly bad decision, so long as the ammunition will function reliably in your gun and you can hit your target with it.

Of course, as you do more research, and get more experience, you’ll probably find you like some ammunition more than others, for whatever reason. That’s fine. It just means that you’re ready to join in the (generally genial) arguments over such matters with other firearms owners. Welcome to the club.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Some additional thoughts, six years later …

Bullet design has continued to improve, with new and occasionally odd-looking designs and materials being introduced regularly. Some of these are *really* interesting, but I keep coming back to the basic truth that the most important factor is hitting the target. No super-corkscrew-unobtanium bullet designed to penetrate all known barriers but still stop inside a bad guy is worth a damn if you miss hitting your target.

And that means practice (and training, if appropriate) is more important than hardware. What I, and a lot of shooters concerned about their self-defense skill, will do is to use practice ammo for training when they go to the range, to keep their basic skill set honed. And then supplement that with a magazine or two (or a cylinder or two) of their carry ammo, so they refresh their knowledge of how it feels and behaves in their gun. This can help keep practice costs down (since good SD ammo can be expensive), but also keeps carry ammo fresh.

Jim Downey

March 18, 2017 Posted by | .22, .25 ACP, .44 Magnum, .45 ACP, Data, Discussion. | , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Comparison shopping.

Remember this graph comparing Muzzle Energy (ME)?

megraph

 

Well, a discussion elsewhere got me to thinking …

So, let’s take a look at .45 Super:

45superme

 

See what I see? Yeah, at 3″ and 4″ all the .45 Super loads are superior in terms of ME over all the other cartridges in the top graph. At 5″ the .357 Mag catches up with some of the .45 Super loads, and at 6″ it is in the center of the pack.

To really do the comparison right, I’d need to average all the .45 Super loads, then add them directly to the first graph, but that’s more time and trouble than I want to take. But my point is that of all the ‘conventional’ CCW-caliber/size guns, it looks like the .45 Super is at the top of the pile. We did formal testing of just one .460 Rowland, and it is comparable to the .45 Super at those barrel lengths (though I know from informal testing that some other loads are more powerful). You have to step up to full .44 Mag to beat either the .357 Mag or .45 Super.

Interesting.

Jim Downey

December 26, 2016 Posted by | .357 Magnum, .357 SIG, .380 ACP, .44 Magnum, .45 ACP, .45 Super, .460 Rowland, 10mm, 9mm Luger (9x19), Data, Discussion. | , , , , , , , , , , , , , , , , , , , , | Leave a comment

Join the party.

All along, we’ve said that if someone wanted to take the time, trouble, and expense to do some additional research along the lines of our protocols, that we’d be happy to include their data on our site. This is particularly true if it helped expand the selection of “real world guns” associated with the data for a given caliber/cartridge. Well, for the first time someone has expressed an interest in doing just that, prompting us to come up with an outline of what standards we feel are required for making sure it relates to our previous tests.

The biggest problem is that ammo manufacturers may, and do, change the performance of their products from time to time. This is why we have on occasion revisited certain cartridges, doing full formal chop tests in order to check how specific lines of ammo have changed. That gives us a benchmark to compare other ammo after a period of several years have passed, and shows how new tests relate to the old data.

But without going to such an extent, how can we be reasonably sure that new data collected by others using their own firearms is useful in comparison to our published data?

After some discussion, we feel that so long as any new testing includes three or more of the specific types of ammo (same manufacturer, same bullet weight & design) we had tested previously, then that will give enough of a benchmark for fair comparison. (Obviously, in instances where we didn’t test that many different types of ammo in a given cartridge, adjustments would need to be made). With that in mind, here are the protocols we would require in order to include new data on our site (with full credit to the persons conducting the tests, of course):

  1. Full description and images of the test platform (firearm) used in the tests. This must specify the make, model number, barrel length, and condition of the firearm. Ideally, it will also include the age of the firearm.
  2. That a good commercial chronograph be used. Brand isn’t critical — there seems to be sufficient consistency between different models that this isn’t a concern. However, the brand and model should be noted.
  3. Chronographs must be positioned approximately 15 feet in front of the muzzle of the firearm used to test the ammo. This is what we started with in our tests, and have maintained as our standard through all the tests.
  4. That five or six data points be collected for each type of ammo tested. This can be done the way we did it, shooting three shots through two different chronographs, or by shooting six shots through one chronograph.
  5. All data must be documented with images of the raw data sheets. Feel free to use the same template we used in our tests, or come up with your own.
  6. Images of each actual box of ammo used in the test must be provided, which show the brand, caliber/cartridge, and bullet weight. Also including manufacturer’s lot number would be preferred, but isn’t always possible.
  7. A note about weather conditions at the time of the test and approximate elevation of the test site above sea level should be included.

We hope that this will allow others to help contribute to our published data, while still maintaining confidence in the *value* of that data. Please, if you are interested in conducting your own tests, contact us in advance just so we can go over any questions.

 

Jim Downey

September 9, 2016 Posted by | .22, .223, .22WMR, .25 ACP, .30 carbine, .32 ACP, .32 H&R, .327 Federal Magnum, .357 Magnum, .357 SIG, .38 Special, .380 ACP, .40 S&W, .41 Magnum, .44 Magnum, .44 Special, .45 ACP, .45 Colt, .45 Super, .450 SMC, .460 Rowland, 10mm, 9mm Luger (9x19), 9mm Mak, 9mm Ultra, Anecdotes, Data, Discussion., General Procedures | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

An absurd comparison. Or is it?

We had another of those wonderful & rare mid-50s January days here today, so I decided to get out for a little range time.

In addition to the other shooting I did (basically, practice with some of my preferred CCW guns), I also did a little head-to-head comparison between a Smith & Wesson M&P 360 J-frame in .38 Special and a Colt Anaconda in .44 Magnum.

Wait … what? Why on Earth would anyone even consider trying to do such an absurd comparison? The S&W is a very small gun, and weighs just 13.3 ounces. The Anaconda is a monster, weighing in at 53 ounces (with the 6″ barrel that mine has), and is literally twice as long and high as the J-frame. The .38 Special is generally considered a sufficient but low-power cartridge for self defense, while the .44 Magnum still holds a place in the popular mind as ‘the most powerful handgun in the world‘ (even though it isn’t).

Well, I was curious about the perceived recoil between the two, shooting my preferred loads for each. The topic had come up in chatting with a friend recently, and I thought I would do a little informal test, just to see what I thought.

So for the M&P 360 I shot the Buffalo Bore .38 special +P, 158 gr. LSWHC-GC which I have chrono’d out of this gun at 1050 fps, with a ME of 386 ft-lbs.

And for the Anaconda I shot Hornady .44 Remington Magnum 240gr XTP JHP, which I have chrono’d at 1376 fps, with a ME of 1009 ft-lbs. (Actually, I don’t have a ‘preferred carry ammo’ for this gun, but this is typical of what I shoot out of it. Were I going to use it as a bear-defense gun, I’d load it with this.)

My conclusion? That the M&P 360 was worse, in terms of perceived recoil. In fact, I’d say that it was *much* worse.

It’s completely subjective, but it does make sense, for a couple of reasons.

First, look at the weight of each gun, compared to the ME of the bullets shot. The J-frame is 13.3 ounces, or about 25% of the 53 ounce weight of the Anaconda. But the ME of 386 ft-lbs of the .38 Special bullet is 38.25% of the ME of the .44 Mag at 1009 ft-lbs. Put another way, the J-frame has to deal with 29 ft-lbs of energy per ounce of the gun, where the Anaconda has just 19 ft-lbs of energy per ounce of the gun. That’s a big difference.

Also, all that recoil of the J-frame is concentrated into a much smaller grip, when compared to the relatively large grip of the Anaconda. Simply, it the difference between being smacked with a hammer and a bag of sand, in terms of how it feels to your (or at least, my) hand.

Thoughts?

 

Jim Downey

January 31, 2016 Posted by | .38 Special, .44 Magnum, Anecdotes, Discussion. | , , , , , , , , , , , , , , , , , | 4 Comments

Six shooter.

Well, well, well, BBTI made it to six years of shooting fun and research!

Yup, six years ago today we posted the first iteration of Ballistics By The Inch, and included data for 13 different handgun cartridges. Since then we’ve continued to expand on that original research, including some extensive testing on how much of an effect the cylinder gap on revolvers has, what performance differences you can expect from polygonal over traditional land & groove rifling, and added another 9 cartridges, as well as going back and including a very large selection of real world guns in all the different cartridges. This blog has had 100,000+ visitors and the BBTI site itself has had something like 25 – 30 million visits (the number is vague because of changes in hosting and record-keeping over time).

We’ve had an impact. I’ve seen incoming links from all around the world, in languages I didn’t even recognize. There’s probably not a single firearms discussion group/blog/site out there which hasn’t mentioned us at some point, and our data is regularly cited in discussions about the trade-offs you make in selecting one cartridge or barrel length over another. I’ve answered countless emails asking about specific points in our data, and have been warmly thanked in return for the work we’ve done. And on more than a few occasions people have pointed out corrections which need to be made, or offered suggestions on how we could improve the site, sometimes providing the results from their own crunching of our data.

When we started, it was fairly unusual to see much solid information on ammo boxes about how the ammunition performed in actual testing. Now that information is common, and expected. Manufacturer websites regularly specify real performance data along with what kind of gun was used for that testing. And the data provided has gotten a lot more … reliable, let’s say. We’ve been contacted by both ammo and firearms manufacturers, who have asked if they can link to our data to support their claims of performance — the answer is always “yes” so long as they make it clear that our data is public and not an endorsement of their product. And we’ve never taken a dime from any of those companies, so we can keep our data unbiased.

And we’re not done. We have specific plans in the works to test at least one more new cartridge (and possibly revisit an old favorite) in 2015. I try to regularly post to the blog additional informal research, as well as sharing some fun shooting and firearms trials/reviews. There’s already been one firearms-related patent issued to a member of the BBTI team, and we’ll likely see several more to come. Because we’re curious guys, and want to share our discoveries and ideas with the world.

So, onward and upward, as the saying goes. Thanks to all who have cited us, written about us, told their friends about us. Thanks to all who have taken the time to write with questions and suggestions. And thanks to all who have donated to help offset the ongoing costs of hosting and testing — it makes a difference, and is appreciated.

 

Jim Downey

November 28, 2014 Posted by | .22, .223, .22WMR, .25 ACP, .30 carbine, .32 ACP, .32 H&R, .327 Federal Magnum, .357 Magnum, .357 SIG, .38 Special, .380 ACP, .40 S&W, .41 Magnum, .44 Magnum, .44 Special, .45 ACP, .45 Colt, .460 Rowland, 10mm, 6.5 Swedish, 9mm Luger (9x19), 9mm Mak, 9mm Ultra, Anecdotes, Data, Discussion., General Procedures, Links, Shotgun ballistics | , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Stereotomy*

Cross posted  from my personal blog.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For those who don’t know, one of my other interests is handgun ballistics research. Specifically, in regards to how barrel length effects bullet velocity for different cartridges and loadings. Even if you don’t like guns, the physics behind ballistic performance can be very interesting.

And here’s a wonderfully graphic image showing those physical forces:

Ruger Alaskan .44 Magnum

Text from the source to go with this image (site is Finnish, and English is not the author’s first language):

Let’s talk a bit about .44 Magnum cartridge. Despite of being very close to diameter of .45ACP the .44Mag is totally different beast. Average .45ACP round generates ~650J of hit energy while .44Mag makes easily 1600J and can be pushed much more beyond that. This specific gun however cannot utilize all potential of .44 Magnum cartridge because of very short barrel. It simply cannot burn all powder. As you can see there is huge cone shaped spray of unburnt stuff flying in the air. With longer barrel show would be different.

Ok, you may have noticed the flames. They are something we haven’t seen before. Especially when you look picture below and huge left side flame in it. Interesting thing is that major amount of the flame is escaping between cylinder and barrel. That short barrel seems to puff bullet our so fast that powder mass just flies out unignited.

The site is filled with a bunch of great high-speed camera images of guns being fired. And it also has something else which is new to me: ‘natural stereoscopic’ images of guns being fired. Like this one:

Now, what do I mean ‘natural stereoscopic’ images? Well, this is pretty cool itself. Here’s a reference link & explanation from the Kuulapaa site:

Help: How to Free-View the Stereo Pairs

Each stereo view consists of two images, one for each eye. Free viewing is the technique that will allow you to direct each of these images separately and simultaneously into each eye. Once that happens, you are said to have “fused” the pair of images into a stereo view.

At the bottom of this page a stereo pair of images is loading with which you can practice. All the stereo pairs shown on this site are in the “cross-eyed” format (my apologies to all the “wall-eyed” people). That means that the first (leftmost) image is for your right eye and the right image is for your left eye.

There are then a series of practice image to show what he means and give you a chance to develop this viewing skill. It works fairly well for me, but does tire my eye muscles fairly quickly. Give it a try and see how you do.

Jim Downey

*Couldn’t resist. Lyrics here.

 

February 1, 2014 Posted by | .44 Magnum, Discussion., Links | , , , , , , , , , , , , , , , , | 1 Comment

Just take a little off the sides, leave the top alone.

So, yesterday was our best day ever for this blog, doing 50% more traffic than any previous day. Why? Well, thanks to a link from The Firearm Blog about my experiments to alter the Buffalo Bore 340gr .44mag loads I’ve written about recently. So I wanted to say thanks to Steve over there, and to all his readers.

And I also wanted to report how the rounds behaved after a trip to the range this morning. I think pictures tell the story just fine. Here’s the first one:

20130829_105140

That’s a 3″ circle, just for reference. Those are three shots, fired from a sitting position at 50 yards (well, paces, so something pretty close to 50 yards). That’s with the standard, unaltered, 340gr rounds from my Winchester 94AE which has the standard iron sights. I wasn’t trying for super accuracy, just the sort of quick sight and shoot you’d do when hunting at that range. It may be worth noting that I had to hand-feed each round into the chamber of the gun, since these unaltered cartridges will not feed from the tube magazine. If you look close, you’ll see that I marked through each hole with a blue Sharpie.

Here’s the second picture:

20130829_105528

Exact same parameters as the first pic, but this time with three rounds which had been shaved as discussed in the previous posts. And since these rounds will reliably feed from the tube magazine, they were shot then the gun was cycled and then the next shot taken in fairly quick sequence. For clarity, I marked through the second set with a red Sharpie.

My conclusion? They’re as accurate as the unaltered cartridges. Which is to say, within the limits of my ability using them like that. With a good shooting rest and a scope you might be able to tell a difference, particularly at greater range. But for what I wanted them for, they’re entirely suitable. YMMV.

 

Jim Downey

August 29, 2013 Posted by | .44 Magnum, Anecdotes, Data, Discussion., Links | , , , , , , , , , , , , | Leave a comment

You want me to stick it *where*??

The beginning of this month, I posted an entry about my initial experiment altering one of those heavy Buffalo Bore 340gr +P+ rounds for .44 magnum. I intended to revisit that experiment in short order, and then write up further thoughts on the matter.

But then my month got rather unexpectedly complicated, with my wife needing an emergency appendectomy, a lengthy hospital stay, and then a fair amount of additional care and treatment. She’s doing grand now, but most of the past month was a bit of a blur.

So I’m just now getting back to the experiment. Fortunately, someone over on Facebook made a suggestion which proved to be just about perfect:  use a pencil sharpener. Specifically, one designed for the larger style of carpenter’s pencils.

The first one I found here at home didn’t work. But my wife remembered an older (and cheaper) one she had and dug it out for me. I gave it a try, and here’s the result:

20130824_140346

The cartridge on the left is the one I initially altered using a rasp and then sandpaper. The one on the right is the one I used the pencil sharpener on. The sharpener itself is there — just one of those cheap plastic ones for schoolkids. If you look close you can see that the blades in it have a bit of rust on them. And the pile of shavings is what I took off the right cartridge.

It took just a little playing around to figure out the best way to shave off the shoulders on the bullet, and just how much I needed to take off, but soon I got the hang of it. Here’s a pic with that initial one, one unaltered cartridge, and three finished cartridges:

20130824_143208

I’ve since done a full box of cartridges. When you get the hang of it, it only takes a couple minutes each. And the results are *very* satisfactory. They’re consistent. Smooth. Uniform. And I have carefully measured the shavings from each cartridge, and they all fall between 8 and 10 grains of lead removed.  Most importantly, they all feed perfectly reliably in my Winchester 94 lever-action.

So if you’ve encountered this problem, you might want to give this a try. You may need to experiment with a couple different sharpeners, and it’s possible that a different design one would work better for you (either an electric one or one that grinds off material rather than cutting it directly). But it’s worth a shot.

Jim Downey

August 24, 2013 Posted by | .44 Magnum, Anecdotes, Discussion. | , , | 9 Comments

There’s more than one way to skin a cartridge.

So, the beginning of July I posted an entry about some informal .44 data I had collected.  As I said at the time:

I was prompted to do so because I had picked up some new Buffalo Bore ammunition that I wanted to try.

Specifically, this ammo:  Buffalo Bore 340gr .44mag

Heavy .44 Magnum +P+ Pistol and Handgun Ammo

And I was VERY impressed with the performance of that ammunition, since it generated over 1653 fps/2063 ft-lbs out of my Winchester 94.  However, there was a problem: it wouldn’t feed in my levergun. Oh, it shot and extracted just fine, but you couldn’t rack a new cartridge from the magazine into the chamber — they would invariably get stuck. Thus making the gun a single-shot, at least as far as that particular ammo was concerned.

So I started thinking about ways around this problem.

My first thought was that perhaps I could develop a similar cartridge using a .44special case. I knew the history of the development of the .44magnum, so i figured that it was probable that the .44special brass would withstand the pressures involved, and give me about 1/8th inch (the difference between the case length of the .44special and the .44magnum) to play with. I found a suitable bullet, and did a little research to see whether anyone had recently tried to develop such power out of a .44special case.

My research pointed to the possibility of developing full .44magnum power out of a .44special case (which was what was done historically, so no big surprise there). And over the course of the last month I worked up two different flights of test ammo experimenting with that idea.

What results did I get? Well, let’s just say that you can indeed get some very powerful rounds using .44special cases. Indeed, using 240 grain bullets (which are fairly standard for the .44) I had considerable success. The rest of the equation is left to the experienced reloader to determine for themselves.

With the 330 grain bullets, though, it was a different story. When approaching the upper end of the published  data for .44magnum, I started to see indications of stress on the spent brass which made me … nervous. Enough so that I decided not to risk shooting the last couple of test rounds. Draw your own conclusions.

And the chronographed power results were only about half of what the Buffalo Bore ammunition I was trying to emulate demonstrated.  Hmm.

Now, it is possible that with a different type of gunpowder, I might be able to come to a different result with my shorter .44special reloads. Maybe.

But we all know how hard it can be to find preferred types of gunpowder these days. So I decided to reconsider my strategy. After all, what I wanted was to have the power of the Buffalo Bore loads, but in a cartridge which would feed reliably in my levergun.

The result? I decided to try to change the shape of the bullet in the Buffalo Bore cartridge, so that the hard leading shoulder would be rounded off in such a way as to properly feed in my gun. After a bit of experimentation this afternoon, this is what I came up with:

20130801_171004

Note the rounded cartridge on the left, next to an unaltered cartridge on the right. In the pan for my balance beam scale you can see the bulk of the lead removed from the bullet in the cartridge on the left. Now, that’s not all of the lead I removed — but it is probably the vast majority of it, since I did the removal over a sheet of paper using a rasp, and then weighed the shavings (which turned out to be 10.5 grains, btw).

That cartridge feeds fine in my levergun. No problems. So the trick will be to experiment with seeing how little lead I can remove while still getting reliable feeding, and getting good at doing so uniformly so as to not really screw up how the bullet behaves aerodynamically. That should be a manageable matter. (Edited to add: see my solution here.)

But I also think I’ll drop Buffalo Bore a note, and see if I can get them to tweak the design of the bullet just a tad to make it more friendly for us levergun owners. Thanks to BBTI, I should have enough cred that perhaps they’ll take note.

We’ll see.

Jim Downey

August 1, 2013 Posted by | .44 Magnum, .44 Special | , , | 8 Comments