Ballistics by the inch

Reprise: Levering the Playing Field: a Magnum Opus

Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for, and it originally ran 3/26/2011. Some additional observations at the end.


In an earlier article, when I said you’d get about a 15% increase in bullet velocity when using a pistol caliber carbine over a handgun, I lied.

Or, rather, I was neglecting one particular class of pistol ammunition which can develop upwards of a 50% increase in velocity/power in a carbine over a handgun: the “magnums,” usually shot out of a lever-action gun. This would include .327 Federal Magnum, .357 Magnum, .41 Magnum, and .44 Magnum.

These cartridges are rimmed, initially developed as powerful handgun rounds, and have their origins in black powder cartridges. This history is important for understanding why they are different than most of the other pistol cartridges and the carbines that use them.

We’ll start with the .357 Magnum, the first of these cartridges developed.

Back in the 1930s a number of people, Elmer Keith most notable among them, were looking to improve the ballistic performance of the .38 Special cartridge. This had been a cartridge originally loaded with black powder. Black powder takes up a lot of space – typically two to four times as much space as smokeless powder of a similar power. Meaning that when people started loading .38 Special cartridges with smokeless powder, the cartridge was mostly empty.

Now, if you were looking to get more power out of a .38 Special, and you saw all that unused space in the cartridge, what would be the obvious thing to do? Right – add more smokeless powder.

The problem is, many of the handguns chambered for the .38 Special using black powder were not strong enough to handle .38 Special cartridges over-charged with smokeless powder. And having handguns blowing up is rough on the customers. Heavier-framed guns could handle the extra power, but how to distinguish between the different power levels and what cartridge was appropriate for which guns?

The solution was to come up with a cartridge, which was almost the same as the .38 Special, but would not chamber in the older guns because it was just a little bit longer. This was the .357 Magnum.

There are two important aspects of the cartridge as far as it applies to lever guns. One is just simply the ability to use more gunpowder (a typical gunpowder load for a .357 magnum uses about half again as much as used in a .38 Special.) And the other is that you can get more complete combustion of the gunpowder used, perhaps even use a much slower burning gunpowder. This means that the acceleration of the bullet continues for a longer period of time.

How much of a difference does this make? Well, from the BBTI data for the .357 Magnum, the Cor Bon 125gr JHP out of a 4″ barrel gives 1,496 fps – and 2,113 fps out of an 18″ barrel. Compare that to the .38 Special Cor Bon 125gr JHP out of a 4″ barrel at 996 fps and 1,190 fps out of an 18″ barrel. That’s a gain of 617 fps for the .357 Magnum and just 194 fps for the .38 Special. Put another way, you get over a 41% improvement with the Magnum and just 19% with the Special using the longer barrel.

Similar improvements can be seen with other loads in the .357 Magnum. And with the other magnum cartridges. And when you start getting any of these bullets up in the range of 1,500 – 2,000 fps, you’re hitting rifle cartridge velocity and power. The low end of rifle cartridge velocity and power, but nonetheless still very impressive.

There’s another advantage to these pistol caliber lever guns: flexibility. Let’s take that .357 again. On the high end of the power band, you can use it as a reliable deer-hunting gun without concern. But if you put some down-loaded .38 Special rounds in it, you can also use it to hunt rabbit or squirrel. I suppose you could even use snake/rat shot loads, though most folks don’t recommend those loads due to concerns over barrel damage. Shooting mild .38 Special loads makes for a great day just plinking at the range.

One thing that I consider a real shame: you can get good quality lever guns for the .357, the .41, and the .44 magnums. But to the best of my knowledge, no one yet makes a .327 Magnum lever gun. I would think that such a gun would meet with a lot of popularity – properly designed, it should be able to handle the .327 Federal Magnum cartridge, the .32 H&R cartridge, even the .32 S&W Long. Again, with the right powder loads, this would give the gun a great deal of flexibility for target shooting and hunting small to medium sized game/varmits.

So, if you like the idea of having a carbine in the same cartridge as your handgun, but want to be able to maximize the power available to you, think about a good lever gun. It was a good idea in the 19th century, and one that still makes a lot of sense today.


Some additional thoughts …

I’m still a little surprised that no manufacturer has come out with a production .327 mag lever gun, though occasionally you hear rumors that this company or that company is going to do so. But I must admit that as time has gone on I’ve grown less interested in the .327 cartridge, since firearms options are so limited — definitely a chicken & egg problem.

One very notable absence from the above discussion is the .22 WMR (.22 Magnum), for the simple reason that we hadn’t tested it yet when I wrote the article. You can find a later article about it here.

Something I didn’t address when I wrote the article initially was ammunition which was formulated to take greater advantage of the longer barrel of a lever gun. Several manufacturers produce such ammo, perhaps most notably Hornady and Buffalo Bore. A blog post which includes the latter ammo out of my 94 Winchester AE can be found here, with subsequent posts here and here.

And lastly, there’s another cartridge we tested which really should be included in the “magnum” category, because it sees the same increasing power levels out to at least 18″ of barrel: .45 Super. This proved to be more than a little surprising, since it is based on the .45 ACP cartridge.  Most semi-auto firearms which shoot the .45 ACP should be able to handle a limited amount of .45 Super, but if you want a lever gun set up to handle the cartridge you’ll have to get it from a gunsmith.


Jim Downey

April 2, 2017 Posted by | .22WMR, .32 H&R, .327 Federal Magnum, .357 Magnum, .38 Special, .41 Magnum, .44 Magnum, .45 ACP, .45 Super, .450 SMC, Data, Discussion. | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Reprise: It’s Not the Length of Your Barrel, It’s How You Use It

My friends over at the Liberal Gun Club asked if they could have my BBTI blog entries cross-posted on their site. This is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for, and it originally ran 3/7/2011. Some additional observations at the end.


“What is the best barrel length?”

It’s a question I get a lot, thanks to my involvement in Ballistics By The Inch. And invariably, I say in response: “it depends.” As in, it depends on what you’re going to use it for.

OK, first thing: I’m talking about pistol cartridges, not rifle cartridges. Got that? Pistol cartridges.

That’s what we studied with our BBTI project (actually, continue to study, since we’ve done several expansions of the cartridges and ammunition tested already, and have another big expansion coming up the beginning of May.) Now that we’ve cleared that up . . .

Different barrel lengths are good for different purposes. The longer the barrel, the longer the sight radius, and so the easier it is to be accurate with the gun. The shorter the barrel, the easier it is to conceal.

And barrel length has an effect on the velocity of a bullet (and hence the power of that bullet.) How much of an effect? Well, it depends.

No, seriously, it depends. Do not believe it when someone tells you “oh, the rule of thumb is about 75 (or 25 or 100 or any other number) feet per second for each inch of barrel.” That number may be right for one given ammunition in one given gun for one given inch of barrel length – but it will not hold true as a general case. Don’t just take my word on this – look at the actual numbers from tests we conducted, using almost 10,000 rounds of ammunition. You can go to the BBTI site and see the data for yourself (it’s all free, with no advertising or anything), but here are two examples:

Cor Bon 165gr JHP +P .45 ACP ammo was tested at 1001 fps with a 2″ barrel. That jumps to 1050 fps with a 3″ barrel, or an increase of about 50 fps. Going to a 4″ barrel you get 1163 fps, or an increase of 113 fps. But when you go from an 10″ barrel to a 11″ barrel, you only get an increase of 23 fps.

Let’s look at Federal Hydra-Shok 230gr JHP .45 ACP. It starts at 754 fps with a 2″ barrel, and jumps to 787 fps out of a 3″ barrel – an increase of 33 fps.  Go to the 4″ barrel and it tested at 865 fps – an increase of 78 fps. And when you go from an 10″ barrel to a 11″ barrel, you only get an increase of 4 fps.

Do you see my point? It not only varies by ammunition, it also varies by which inch of the barrel you are talking about – the inch between 3 and 4 sees a lot more increase than the inch between 10 and 11.

Almost all handgun cartridges show this effect, and it makes sense: pistol cartridges use a fast burning powder, but it still needs a little bit of time to completely combust. The highest acceleration comes at first, and then usually handgun bullets plateau out somewhere between 6″ and 10″, with little additional velocity with longer barrels past that point. The graph of our first example shows this very well:

Some cartridges even show velocity starting to drop off with longer barrels, as the friction of the bullet passing through the barrel overcomes any additional boost from the gunpowder. Notably, the “magnum” cartridges (.327, .357, .41, and .44) all show a continued climb in velocity/power all the way out to 18″ of barrel length (the maximum we test), though the amount of increase tends to get smaller and smaller the longer the barrel.

So, back to “it depends”: if you want a lever-gun or carbine, which uses a pistol cartridge, you’re best off using one of the magnums if you want maximum power. If, however, you want to use a carbine for an additional power boost and better aiming, one with a barrel length somewhere in the “plateau” for a given cartridge makes sense (and this is why subguns typically have barrels in the 8 – 10″ range).

For a hunting pistol, you probably want to have a barrel of 6″ to 8″ to get a lot of the additional power and still have it manageable. This barrel length will also give you a nice big sight radius for accuracy, making it good for hunting or target shooting.

How about for concealed carry? The shorter the barrel, the better, right? Well, if you look through all our data, you’ll see that usually, most cartridges see the greatest jump in velocity (and hence power) from 2″ to 4″. Now, the smaller the caliber and the lighter the bullet, the more the big jump tends to come right up front – from 2″ to 3″. The larger the caliber and the heavier the bullet, the more it tends to come a little later, from 3″ to 4″. Still, you can decide for yourself whether the trade-off in less power for ease of carry is worth it.

And good news for the revolver fans: because the cylinder basically functions to extend the barrel, your 2″ snubby actually functions more like a gun with a 3.5″ – 4″ barrel. Though there is some velocity/power loss due to the cylinder gap. How much loss? That is actually the next thing we’ll be testing, but I’d bet that . . . it depends.


Since I wrote that six years ago, we’ve done a LOT more testing at BBTI, and have now shot more than 25,000 rounds and greatly expanded our data. The cylinder gap tests mentioned above did indeed show that the amount of loss did vary according to a number of factors, but for the most part established that the effect wasn’t as large as many people thought. And we found an interesting exception to the “magnum” rule in one of our most recent tests: it turns out that the .45 Super cartridge behaves like a true magnum, by continuing to gain more power the longer the barrel, until at carbine lengths it is on a par with (or even exceeds) the .460 Rowland cartridge. Since the .45 Super is based on the .45 ACP cartridge, we expected it to perform like that cartridge and level off at about 10″, but it clearly continues to gain out to at least 18″.

I also want to add a couple of quick comments about how concealed-carry guns have changed, though this is more just personal observation than any kind of rigorous research. I think that as concealed-carry has continued to expand, more gear is on the market to make it easier to do, and I think for that reason some people are able to carry slightly larger guns and there are more guns available with barrel length in the 4″ – 5″ range. In addition, sight/optics/laser options have continued to improve, making simple sight radius less of a factor — meaning that for those who do want to carry a smaller gun, it is easier to use it well (though having better sights/optics/lasers is NOT a substitute for practice!) I expect that both these trends will continue.

Jim Downey

March 26, 2017 Posted by | .327 Federal Magnum, .357 Magnum, .41 Magnum, .44 Magnum, .45 ACP, .45 Super, .450 SMC, .460 Rowland, Data, Discussion., Revolver | , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Join the party.

All along, we’ve said that if someone wanted to take the time, trouble, and expense to do some additional research along the lines of our protocols, that we’d be happy to include their data on our site. This is particularly true if it helped expand the selection of “real world guns” associated with the data for a given caliber/cartridge. Well, for the first time someone has expressed an interest in doing just that, prompting us to come up with an outline of what standards we feel are required for making sure it relates to our previous tests.

The biggest problem is that ammo manufacturers may, and do, change the performance of their products from time to time. This is why we have on occasion revisited certain cartridges, doing full formal chop tests in order to check how specific lines of ammo have changed. That gives us a benchmark to compare other ammo after a period of several years have passed, and shows how new tests relate to the old data.

But without going to such an extent, how can we be reasonably sure that new data collected by others using their own firearms is useful in comparison to our published data?

After some discussion, we feel that so long as any new testing includes three or more of the specific types of ammo (same manufacturer, same bullet weight & design) we had tested previously, then that will give enough of a benchmark for fair comparison. (Obviously, in instances where we didn’t test that many different types of ammo in a given cartridge, adjustments would need to be made). With that in mind, here are the protocols we would require in order to include new data on our site (with full credit to the persons conducting the tests, of course):

  1. Full description and images of the test platform (firearm) used in the tests. This must specify the make, model number, barrel length, and condition of the firearm. Ideally, it will also include the age of the firearm.
  2. That a good commercial chronograph be used. Brand isn’t critical — there seems to be sufficient consistency between different models that this isn’t a concern. However, the brand and model should be noted.
  3. Chronographs must be positioned approximately 15 feet in front of the muzzle of the firearm used to test the ammo. This is what we started with in our tests, and have maintained as our standard through all the tests.
  4. That five or six data points be collected for each type of ammo tested. This can be done the way we did it, shooting three shots through two different chronographs, or by shooting six shots through one chronograph.
  5. All data must be documented with images of the raw data sheets. Feel free to use the same template we used in our tests, or come up with your own.
  6. Images of each actual box of ammo used in the test must be provided, which show the brand, caliber/cartridge, and bullet weight. Also including manufacturer’s lot number would be preferred, but isn’t always possible.
  7. A note about weather conditions at the time of the test and approximate elevation of the test site above sea level should be included.

We hope that this will allow others to help contribute to our published data, while still maintaining confidence in the *value* of that data. Please, if you are interested in conducting your own tests, contact us in advance just so we can go over any questions.


Jim Downey

September 9, 2016 Posted by | .22, .223, .22WMR, .25 ACP, .30 carbine, .32 ACP, .32 H&R, .327 Federal Magnum, .357 Magnum, .357 SIG, .38 Special, .380 ACP, .40 S&W, .41 Magnum, .44 Magnum, .44 Special, .45 ACP, .45 Colt, .45 Super, .450 SMC, .460 Rowland, 10mm, 9mm Luger (9x19), 9mm Mak, 9mm Ultra, Anecdotes, Data, Discussion., General Procedures | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment