Ballistics by the inch

Comparison shopping.

Remember this graph comparing Muzzle Energy (ME)?



Well, a discussion elsewhere got me to thinking …

So, let’s take a look at .45 Super:



See what I see? Yeah, at 3″ and 4″ all the .45 Super loads are superior in terms of ME over all the other cartridges in the top graph. At 5″ the .357 Mag catches up with some of the .45 Super loads, and at 6″ it is in the center of the pack.

To really do the comparison right, I’d need to average all the .45 Super loads, then add them directly to the first graph, but that’s more time and trouble than I want to take. But my point is that of all the ‘conventional’ CCW-caliber/size guns, it looks like the .45 Super is at the top of the pile. We did formal testing of just one .460 Rowland, and it is comparable to the .45 Super at those barrel lengths (though I know from informal testing that some other loads are more powerful). You have to step up to full .44 Mag to beat either the .357 Mag or .45 Super.


Jim Downey

December 26, 2016 Posted by | .357 Magnum, .357 SIG, .380 ACP, .44 Magnum, .45 ACP, .45 Super, .460 Rowland, 10mm, 9mm Luger (9x19), Data, Discussion. | , , , , , , , , , , , , , , , , , , , , | Leave a comment

Working within your limitations.

I love my Cx4 Storm carbine, as I have mentioned and reviewed. Particularly once it was set-up to deal with the additional power of the .45 Super cartridge, it has proven to be a reliable and formidable home defense gun.

But there is ONE thing I don’t like about my Cx4: in .45 ACP/Super, the magazines only hold 8 rounds. Beretta doesn’t offer a larger capacity magazine.

Wait — let’s make that TWO things I don’t like about my Cx4: the standard magazine fits up inside the mag well, such that it can be hard to extract and may pinch your hand if you try to do a quick change of mags.

Wait again, there’s a THIRD thing: while there’s ample room for it in the composite buttstock, Beretta didn’t see fit to include storage for one or more additional magazines.


OK, so here are some solutions I came up with to deal with these problems.

The first two problems are fixed by an after-market product which extends the standard mag by two rounds, and is designed such that it fits with the bottom of the mag well and won’t pinch your hand during a fast magazine change: Taylor Freelance Extended Magazine Base Pad. They’re not cheap, but they’re well made and work fine.

To deal with the storage problem, I picked up an inexpensive 4 pistol mag storage pouch, intended to go on a belt or MOLLE system. With three simple snap-on extensions, I was able to fit it so that it held snug to the butt of my carbine, as shown:


Here’s the back, showing the snap extensions:


And lastly, I positioned the pouch ‘upside down’, so that when the velcro tab is pulled, the mag slips out, positioned ready to insert into the carbine. As you can see:


Since I am right-handed, the mag pouch doesn’t get in my way, and it puts an extra 40 rounds immediately available such that I don’t even need to take the carbine down from my shoulder in order to quickly reload.

It’s not perfect, but it’s a good workable solution to the limitations of the Cx4. And now I love my little carbine even more.


Jim Downey

October 16, 2016 Posted by | .45 ACP, .45 Super, .450 SMC, Discussion. | , , , , , , , , , , , , , , | Leave a comment

Join the party.

All along, we’ve said that if someone wanted to take the time, trouble, and expense to do some additional research along the lines of our protocols, that we’d be happy to include their data on our site. This is particularly true if it helped expand the selection of “real world guns” associated with the data for a given caliber/cartridge. Well, for the first time someone has expressed an interest in doing just that, prompting us to come up with an outline of what standards we feel are required for making sure it relates to our previous tests.

The biggest problem is that ammo manufacturers may, and do, change the performance of their products from time to time. This is why we have on occasion revisited certain cartridges, doing full formal chop tests in order to check how specific lines of ammo have changed. That gives us a benchmark to compare other ammo after a period of several years have passed, and shows how new tests relate to the old data.

But without going to such an extent, how can we be reasonably sure that new data collected by others using their own firearms is useful in comparison to our published data?

After some discussion, we feel that so long as any new testing includes three or more of the specific types of ammo (same manufacturer, same bullet weight & design) we had tested previously, then that will give enough of a benchmark for fair comparison. (Obviously, in instances where we didn’t test that many different types of ammo in a given cartridge, adjustments would need to be made). With that in mind, here are the protocols we would require in order to include new data on our site (with full credit to the persons conducting the tests, of course):

  1. Full description and images of the test platform (firearm) used in the tests. This must specify the make, model number, barrel length, and condition of the firearm. Ideally, it will also include the age of the firearm.
  2. That a good commercial chronograph be used. Brand isn’t critical — there seems to be sufficient consistency between different models that this isn’t a concern. However, the brand and model should be noted.
  3. Chronographs must be positioned approximately 15 feet in front of the muzzle of the firearm used to test the ammo. This is what we started with in our tests, and have maintained as our standard through all the tests.
  4. That five or six data points be collected for each type of ammo tested. This can be done the way we did it, shooting three shots through two different chronographs, or by shooting six shots through one chronograph.
  5. All data must be documented with images of the raw data sheets. Feel free to use the same template we used in our tests, or come up with your own.
  6. Images of each actual box of ammo used in the test must be provided, which show the brand, caliber/cartridge, and bullet weight. Also including manufacturer’s lot number would be preferred, but isn’t always possible.
  7. A note about weather conditions at the time of the test and approximate elevation of the test site above sea level should be included.

We hope that this will allow others to help contribute to our published data, while still maintaining confidence in the *value* of that data. Please, if you are interested in conducting your own tests, contact us in advance just so we can go over any questions.


Jim Downey

September 9, 2016 Posted by | .22, .223, .22WMR, .25 ACP, .30 carbine, .32 ACP, .32 H&R, .327 Federal Magnum, .357 Magnum, .357 SIG, .38 Special, .380 ACP, .40 S&W, .41 Magnum, .44 Magnum, .44 Special, .45 ACP, .45 Colt, .45 Super, .450 SMC, .460 Rowland, 10mm, 9mm Luger (9x19), 9mm Mak, 9mm Ultra, Anecdotes, Data, Discussion., General Procedures | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Velocity is great, but mass penetrates.

OK, kiddies, it’s time for SCIENCE!

Ballistic science, specifically. I promise to keep the math to a minimum, because I don’t like it much, either. Jim Kasper is the one who thinks in terms of equations, not me.

If you look at any of the various pages for test results on BBTI you will see that each caliber/cartridge also has a link for a Muzzle Energy (the kinetic energy of a bullet as it leaves the muzzle of a gun) graph for that set of results. That’s because Muzzle Energy can also give an idea of the effectiveness of a given ammo, since it is a calculation of both the weight of a bullet as well as the velocity it is traveling. This calculation, specifically:

E_\text{k} =\tfrac{1}{2} mv^2

Here’s what that says in English, taken from the explanation that goes with that image on Wikipedia:

The kinetic energy is equal to 1/2 the product of the mass and the square of the speed.

In other words, you multiply the weight of the bullet times the square of the velocity, then take half of whatever number you get. And that gives you the Muzzle Energy, usually (as on our site) expressed in foot-pounds of energy.

So there are two ways you can change the result: change the amount of weight, or change the amount of velocity.

But since it is the square of the velocity (the velocity times itself), changes to the velocity have a larger impact on the final amount of Muzzle Energy. That’s the reason why how the velocity changes due to barrel length is such a big deal, and why we’ve done all the research that we’ve done over the last seven years.

But while Muzzle Energy gives you a good way to compare the power and potential effectiveness of a given cartridge as a self-defense round, there are a couple of other factors to consider. A couple of VERY important factors.

One is the shape and composition of the bullet itself. There’s a very good (surprisingly good, in fact — I heartily recommend you read the whole thing) discussion of the basic shapes and how they interact with the human body in this online teaching tool intended for medical students. The relevant excerpt:

Designing a bullet for efficient transfer of energy to a particular target is not straightforward, for targets differ. To penetrate the thick hide and tough bone of an elephant, the bullet must be pointed, of small diameter, and durable enough to resist disintegration. However, such a bullet would penetrate most human tissues like a spear, doing little more damage than a knife wound. A bullet designed to damage human tissues would need some sort of “brakes” so that all the KE was transmitted to the target.

It is easier to design features that aid deceleration of a larger, slower moving bullet in tissues than a small, high velocity bullet. Such measures include shape modifications like round (round nose), flattened (wadcutter), or cupped (hollowpoint) bullet nose. Round nose bullets provide the least braking, are usually jacketed, and are useful mostly in low velocity handguns. The wadcutter design provides the most braking from shape alone, is not jacketed, and is used in low velocity handguns (often for target practice). A semi-wadcutter design is intermediate between the round nose and wadcutter and is useful at medium velocity. Hollowpoint bullet design facilitates turning the bullet “inside out” and flattening the front, referred to as “expansion.” Expansion reliably occurs only at velocities exceeding 1200 fps, so is suited only to the highest velocity handguns.

Now, while that last bit about needing to exceed 1200 fps may have been true, or a ‘good enough’ approximation a few years ago, it isn’t entirely true today. There has been a significant improvement in bullet design in the last two decades (and these innovations continue at a rapid pace), so that there are now plenty of handgun loads available which will reliably expand as intended in the velocity range expected from the round.

The other REALLY important consideration in bullet effectiveness is penetration. This is so important, in fact, that it is the major criteria used by the FBI and others in assessing performance. From Wikipedia:

According to Dr. Martin Fackler and the International Wound Ballistics Association (IWBA), between 12.5 and 14 inches (318 and 356 mm) of penetration in calibrated tissue simulant is optimal performance for a bullet which is meant to be used defensively, against a human adversary. They also believe that penetration is one of the most important factors when choosing a bullet (and that the number one factor is shot placement). If the bullet penetrates less than their guidelines, it is inadequate, and if it penetrates more, it is still satisfactory though not optimal. The FBI’s penetration requirement is very similar at 12 to 18 inches (305 to 457 mm).

A penetration depth of 12.5 to 14 inches (318 and 356 mm) may seem excessive, but a bullet sheds velocity—and crushes a narrower hole—as it penetrates deeper, while losing velocity, so the bullet might be crushing a very small amount of tissue (simulating an “ice pick” injury) during its last two or three inches of travel, giving only between 9.5 and 12 inches of effective wide-area penetration.

As noted above, the design of the bullet can have a substantial effect on how well it penetrates. But another big factor is the weight, or mass, of the bullet relative to its cross-section — this is called ‘sectional density‘. Simply put, a bullet with a large cross-section and high mass will penetrate more than a bullet with the same cross-section but low mass moving at the same speed. It isn’t penetration, but think of how hard a baseball hits versus a whiffleball moving at the same speed. They’re basically the same size, but the mass is what makes a big difference. (See also ‘ballistic coefficient‘).

With me so far?

OK, let’s go all the way back up to the top where I discussed Muzzle Energy. See the equation? Right. Let’s use the baseball/whiffleball analogy again. Let’s say that the baseball weighs 5.0 ounces, which is 2,187.5 grains. And the whiffleball weighs 2/3 of an ounce, or 291.8 grains. A pitcher can throw either ball at say 60 mph, which is 88 fps. That means (using this calculator) that the Kinetic Energy of a baseball when it leaves the pitcher’s hand is  37 foot-pounds, and the whiffleball is just 5 foot-pounds. Got that?

But let’s say that because it is so light, the pitcher can throw the wiffleball twice as fast as he can throw a baseball. That now boosts the Kinetic Energy of the whiffleball to 20 foot-pounds.

And if you triple the velocity of the whiffleball? That gives it a Kinetic Energy of 45 foot-pounds. Yeah, more than the baseball traveling at 88 fps.

OK then.

Now let’s go look at our most recent .45 ACP tests. And in particular, the Muzzle Energy graph for those tests:

What is the top line on that graph? Yeah, Liberty Civil Defense +P 78 gr JHP.  It has almost 861 foot-pounds of energy, which is more than any other round included in those tests. By the Muzzle Energy measure, this is clearly the superior round.

But would it penetrate enough?

Maybe. Brass Fetcher doesn’t list the Liberty Civil Defense +P 78 gr JHP. But they did test a 90 gr RBCD round, which penetrated to 12.0″ and only expanded by 0.269 square inch. Compare that to the other bullets listed on his page, and you’ll see that while the depth of penetration isn’t too bad when compared to other, heavier, bullets, that round is tied with one other for the least amount of expansion.

Driving a lightweight bullet much, much faster makes the Muzzle Energy look very impressive. Just the velocity of the Liberty Civil Defense +P 78 gr JHP is impressive — 1865 fps out of a 5″ barrel is at least 50% faster than any other round on our test results page, and almost 400 fps faster than even the hottest of the .45 Super loads tested.

But how well would it actually penetrate? Without formally testing it, we can’t say for sure. But I am skeptical. I’m not going to volunteer to getting shot with one of the things (or even hit with a whiffleball traveling 180 mph), but I’m also not going to rely on it to work as it has to in the real world, where deep penetration is critical. I want a bullet with enough punch to get through a light barrier, if necessary. Like this video from Hickok45, via The Firearm Blog:

Personally, I prefer a heavier bullet. Ideally, I want one which is also going to have a fair amount of velocity behind it (which is why I have adapted my .45s to handle the .45 Super). All things being equal (sectional density, bullet configuration and composition), velocity is great, but mass is what penetrates.

Jim Downey

November 8, 2015 Posted by | .45 ACP, Data, Discussion. | , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Dealing with power.

About 40 years ago, when I was an idiot teenager (yeah, I know — redundant, particularly in my case), we got this ’48 Willys Jeep. Since the engine was shot, we dropped an Olds V-6 in it. This was, essentially, like strapping a rocket to a skateboard. And it was too much power for idiot teenage me to handle.  Twice I snapped the driveshaft on the thing, just dumping the clutch too damned quickly. Twice. My uncle (who I lived with) was certain that I had been racing or something similar. The truth was, I didn’t even have that much of an excuse; I had simply goosed the engine too much and popped it into gear too fast. The original driveshaft just couldn’t handle that much of a power spike.

This is kinda what happens to your poor .45 ACP firearm when you decide to run some .45 Super through it.

With the Jeep, we wound up putting a more robust driveshaft in it. And I learned that if I wanted to keep driving it, I needed to be less of an idiot.

This analogy holds to how you should approach handling .45 Super power out of your .45 ACP gun. Chances are, very occasional use of these much more powerful loads won’t cause any problem in a quality, modern-made firearm. But if you’re smart, you’ll either greatly limit how many times you subject your gun (and your body) to that amount of power, or you will take steps to help manage it better and extend the life of your gun.

Typical ‘standard’ (non +P) .45 ACP loads tend to have a maximum pressure of between say 15,000 PSI and about 18,000 PSI. When you get past that, you get into ‘over-pressure’, or +P territory, up to about 23,000 PSI. This is the range most common modern firearms are built to handle safely.

But .45 Super generates more chamber pressure than that. How much more? Well, it’s a bit difficult to say, since there is a surprising dearth of data readily available. Neither my 49th Edition of Lyman’s Reloading Handbook nor my 13th Edition of Cartridges of the World have data for the .45 Super. Real Guns has some reloading formulas for .45 Super which give results consistent with our tests, but there are no pressure specs listed. Hodgdon Reloading has some pressure specs (in C.U.P.), but all their listed results for .45 Super are well below what our tests results were. Wikipedia lists .45 Super as having a maximum pressure of 28,000 PSI, and given that .460 Rowland is usually considered to run 35,000 – 40,000 PSI, that is probably in the correct ballpark.

I have written previously about converting a standard Glock 21 from .45 ACP over to .460 Rowland, and what is involved with that. Specifically, a new longer barrel with a fully-supported chamber which accommodates the longer case of the .460 Rowland, a 23 pound recoil spring, and a nice compensator to help tame the recoil. I also changed out the magazine springs, using an aftermarket product which increases the spring power by about 10%. This is because even with the other changes, the slide still moves much faster than with .45 ACP loads, and the increased mag spring power helps with reliability in feeding ammo. But even with all of that, shooting full-power .460 Rowland loads tends to cause damage to my magazines (as seen in the linked post).

Do you need to do all that in order for your firearm to handle frequent use of .45 Super loads? Well, I think that if you want to use a .460 Rowland conversion kit, it *will* tame the amount of recoil more than enough, but I don’t think that it is necessary to go quite that far. I should note that I have now run several hundred .45 Super loads through my Glock 21, and the gun has operated flawlessly — WITHOUT any damage to the magazines.

Converted G21 on left, G30S on right.

Converted G21 on left, G30S on right.

Rather, I think that the smart thing to do is to start off with going to a heavier recoil spring, perhaps swapping out a metal guide rod for a plastic one (if your gun comes with a plastic guide rod). Stronger magazine springs are probably still a good idea, to aid with reliable feeding. If suitable for your gun, add in a recoil buffer. These are the steps I have taken with my Glock 30S, and am planning for my Beretta Cx4 Storm. So far I have put a couple hundred .45 Super loads through the G30S with this configuration, and it has operated without a problem — again without any damage to the magazines.

As I said in my previous blog post, I still think that the .460 Rowland is a hell of a cartridge. But I think that the .45 Super offers almost as many advantages to the average shooter, with less hassle. I would still recommend that anyone who intends on shooting more than the very occasional .45 Super loads out of their gun consider making some simple changes to handle the additional power and extend the life of their gun. Don’t be like the idiot teenage me; deal with the power intelligently.


Jim Downey



November 1, 2015 Posted by | .45 ACP, .45 Super, .450 SMC, .460 Rowland, Data, Discussion., Links | , , , , , , , , , , , , , , , , , , , , , | 5 Comments

.45 Super data now published.

At long last, we’ve now put up the page with the results of our .45 Super/.450 SMC tests earlier this year! We’ve also published the additional .45 ACP rounds tested at the same time, which doubles the amount of data for that cartridge available on our site.

As noted on the new .45 Super page:

.45 Super and .450 SMC (Short Magnum Cartridge) are two relatively recent variations on the classic .45 ACP cartridge.  They were designed to gain more power from the cartridge than it was originally designed to produce, using modern smokeless powder and more robust case specifications.  And these rounds achieve this goal, producing about 100% greater muzzle energy for a given bullet weight over standard pressure .45 ACP rounds, and about a 50% increase over .45 ACP +P (over-pressure) rounds.

Take a look at the Muzzle Energy graph for .45 Super:

One thing I notice right away is that in general, the energy curve for this cartridge is much more pronounced and consistent than the energy curve for .45 ACP loads (whether standard pressure or +P). In other words, this is a round which continues to see impressive gains in energy over a longer barrel length, rather than flattening out starting at 8 – 10″. That’s more like the behavior you see from a magnum revolver round. Even the .460 Rowland tends to not see much gain after about 10″ — with the result that while the .460 Rowland is clearly a superior round for shorter barrels over the .45 Super, most loadings of the .45 Super meet or exceed the energy of the .460 Rowland by the time you get to carbine-length barrels. And you don’t need to rechamber your gun to shoot it.

Seeing this performance out of the Cx4 Storm actually prompted me to act on something I had just been thinking about: to go out and buy one of the remaining new Cx4 Storms out there (Beretta decided to discontinue the gun in that caliber earlier this year). In a future blog post I’ll talk about the alterations I am making to that gun, and that I have made to a Glock G30S, to handle the additional power of the .45 Super cartridge.

For now, enjoy playing with the data. And please be sure to share it with others! Because while I have long been an advocate for the .460 Rowland — a cartridge I still like very much — I now think that the .45 Super is a better choice for most people. Further discussion of that next time.


Jim Downey

October 30, 2015 Posted by | .45 ACP, .45 Super, .450 SMC, .460 Rowland, Data, Discussion., General Procedures | , , , , , , , , , , , , , , , , | 7 Comments

Does primer size make a difference?

Following the success of our .45 Super/.450 SMC tests this summer, I sat down to work up some reloads which would mimic the factory ammo we had tested.

Since both of these cartridges are fairly unknown, there isn’t a whole lot of good information out there to draw upon. But there is some, at least for the .45 Super, and late last year/earlier this year I had worked up some preliminary loads, starting with .45 ACP +P (overpressure) published load data. But that was done using .460 Rowland cases and shot through my converted Glock G21, which I knew could handle the extra power. When reloading, it pays to be careful and conservative.

After I had seen the results from the extensive .45 Super/.450 SMC tests (some of which has already been published), I had a pretty good idea of where the power band for these loads was, and how different guns could handle it. Since I had previously worked up loads for .460 Rowland as well as done a lot of .45 ACP reloading over the years, I figured that I could come up with some pretty reasonable load levels to match what we had seen in the factory ammo.

So I sat down, looked through all my results and what was available elsewhere, and came up with loads* for three different bullet weights I had on hand: 185gr XTP, and 200gr & 230gr FP. I chose to use Longshot powder, which I have used successfully for both .45 ACP and .460 Rowland loads. (This is not an endorsement of any of these products, and I have not been compensated from these manufacturers in any way. This is just stuff I have on hand and know has worked previously.) I loaded 50 rounds each in .45 Super cases, using standard Large Pistol Primers.

But as I was doing so, I also realized that I had a bunch of .450 SMC cases left from the tests. And I figured that it might be an interesting experiment to load those cases to the exact same specs, other than the difference in primer size. To give the cartridge the benefit of better ignition, I used Small Magnum Pistol primers.  Again, I loaded 50 rounds of each bullet weight.

Again, other than the difference in primers, the reloads I worked up were identical.


OK, before I go any further, I want to toss in some caveats and explanations:

  1. This was an informal test, using only one chronograph and under less rigorous conditions than the formal BBTI tests. It was just me shooting a string of five shots, keeping mental track of what the numbers were for each, and then writing down a ballpark figure which seemed to best represent the overall performance. Also, I wasn’t using the BBTI light-frame which gives us more consistent chrono results.
  2. I was using my personal firearms, two of which (the Cx4 and Glock G30S) were brand new — this was their very first trip to the range. Yeah, I got them after seeing how similar guns performed in the .45 Super/.450 SMC tests earlier.


Now, about the guns used:

  • Glock G30S with a Lone Wolf 23lb recoil spring and steel guide rod package. 3.77″ barrel
  • Glock 21 converted to .460 Rowland (heavier recoil spring, compensator, and Lone Wolf .460 R barrel). 5.2″ barrel
  • Beretta Cx4 carbine, standard right out of the case. But I am going to install a steel guide rod and heavy buffer in it. 16.6″ barrel



Ammo                                     G30S                                    G21                                             Cx4

.45 Super 185gr                 1185 fps / 577 ft-lbs                1250 fps/ 642  ft-lbs             1550 fps / 987 ft-lbs

.450 SMC 185gr                 1125 fps / 520 ft-lbs                1200 fps / 592 ft-lbs             1500 fps / 925 ft-lbs


.45 Super 200gr                1130 fps / 567 ft-lbs                1225 fps / 667 ft-lbs              1420 fps / 896 ft-lbs

.450 SMC 200gr                1090 fps  / 528 ft-lbs               1180 fps / 619 ft-lbs              1420 fps / 896 ft-lbs


.45 Super 230gr                1080 fps / 596 ft-lbs                 1160 fps / 687 ft-lbs              1310 fps / 877 ft-lbs

.450 SMC 230gr                1060 fps  / 676 ft-lbs                1130 fps / 652 ft-lbs              1310 fps / 877 ft-lbs


Interesting, eh? What seems to be happening is that full ignition of the powder takes longer with the .450 SMC loads. That would explain why there’s more of a discrepancy with the lighter bullets and shorter barrels, so the bullet clears the barrel faster — some of the powder hasn’t yet ignited with the Small Magnum Primer. But with the heavier bullets and longer barrel of the Cx4, there more time for more of the powder to ignite, reducing or eliminating the difference in performance.

That’s my take on it. If you have another one, please comment.

Also, I want to note just how well I managed to emulate the performance of the factory ammo. Compare the numbers above with what I have already published for the Glock 21 and Cx4 used in the tests earlier. And it isn’t published yet, but the G30S numbers are also right on-the-money for how the G36 used in the tests earlier performed (the two guns have the same barrel length). In all instances, my reloads* performed within 10-15 fps of the factory loads.


Jim Downey

*So, what exactly were those loads specs? OK, here’s the data, but provided with the understanding that you should WORK UP YOUR OWN LOADS starting below these amounts, and accepting that you do so on your own responsibility. Also note that any changes in bullet weight, bullet brand, or powder type may/will alter the results you can expect. AGAIN: you use this data on your own responsibility. Be safe.

All bullet weights had a 1.250″ O.A.L.

All were given a slight taper crimp.

185gr XTP rounds had 11.0gr of Longshot powder.

200gr FP rounds had 10.5gr of Longshot powder.

230gr FP rounds had 10.0gr of Longshot powder.

October 21, 2015 Posted by | .45 ACP, .45 Super, .450 SMC, .460 Rowland, Anecdotes, Data, Discussion., General Procedures | , , , , , , , , , , , , , , , , , , | 14 Comments

Now, *that’s* customer service.

Remember this guy?

with mag

Well, earlier this summer my pistol suffered a mechanical problem with what Boberg calls the ‘lift mechanism’ — the part which grabs a cartridge out of the magazine and pulls it back and up to position it for loading into the chamber. Basically, a pin which helps hold the mechanism in place broke, and the gun locked up.

I contacted Boberg, told them what happened, sent along some pics. They immediately responded, said that it was likely that since the gun was such a low serial number (just 0120) it had one of an early batch of pins which had substandard quality control. No biggie. They sent out a pick-up tag so I could ship it directly to them. About two weeks later (including shipping time), I had the gun back, with a new pin, all ready to go — without it costing me a cent.

Cool, right?

A couple days later I took it out to the range to see how it was working. And on the 19th round fired, it locked up again. Exact same way.

I contacted Boberg again. Again, they responded immediately. And they were astounded that it had happened a second time. The lead smith for the company queried me about the specifics of what happened, what ammo I was using, etc. Not because he thought that I was trying to pull a fast one, but because he was genuinely baffled how this could happen twice. Without hesitation they sent out another pick up tag, and I shipped the gun back in the same box it had arrived in a couple days previously. And I told them that they could take their time to investigate what happened — that I was in no hurry to have the gun back, and that above all I wanted a reliable gun rather than a quick turn-around. The lead smith understood and agreed completely.

So, a couple weeks later I got the gun back. Just yesterday, as a matter of fact (I asked them not to ship it until I was back from vacation). And I have yet to get out to test it myself. But this is what was in the box with the gun:


I want to point to the first item on the invoice, which says:

Repair of firearm. RA#611, Serial #S450120. (Replaced broken lift mechanism. Put 250 rounds through it. Passed test firing.)

They ran 250 rounds through it. Not just one (which is typical for a test firing), or even a mag full (6 rounds). 250. That’s easily $100 of ammo. And probably a couple hours of someone’s time. Because like me, they wanted to make sure the gun was functioning reliably.

Now, *that*, my friends, is customer service.

Anything mechanical can break down. Even the best made items can have weird failures, regardless of the quality of materials or the care of a craftsman. It happens. I’m a conservator of rare books and documents, and it has happened in my work. What matters is whether the person/company behind that product will stand by their work and make it good.

Boberg has. Kudos to them.

Jim Downey

PS: Just for grins, here’s a pic of the interior I took before cleaning the gun this morning:


August 22, 2015 Posted by | .45 ACP | , , , , , , , , | 4 Comments

Do you want good data, or useable data?

Got a question I haven’t seen for a while. Here it is, with my answer (and a little bit of additional explanation) to follow:

Thanks for the site!  You do not post the altitude and  temperature of your results (unless I missed that).  Can you let us know what your reference points are?  Also, what effect would altitude and temperature variation have on your results?

Here’s the answer I gave:

Well, it’s been a while since anyone asked about that … thanks!

We did discuss this early on, and decided pretty quickly that while both of those would indeed have an effect (as would the changes in barometric pressure), that it would be so small as to not matter for the degree of accuracy of our testing equipment and the limited number of rounds tested. If you were trying to get really good data, everything would have to be much more rigorous and controlled … and we would never ever have gotten the data that we did. So as I remind people: consider the results to be *indicative*, not definitive. In other words, don’t try to read too much into variances of a few feet-per-second, or convince yourself that such minor differences really matter.

Hope that helps to give a little perspective.

Oh, and I can answer one of your questions: almost all the testing was done at an elevation of approximately 744′ above sea level, according to commercial GPS systems.

I think that’s pretty clear, but I want to emphasize one part of it: that if we had set out to provide really rigorous and statistically-significant data, the chances are that we would never have even gotten past the first test sequence. And that means there would be NO BBTI.

As it is, we have tested something in excess of 25,000 rounds over the last 7 years. At a personal cost of more than $50,000. And that doesn’t begin to include the amount of labor which has gone into the project. To get really solid data which was statistically significant, we probably would have needed to do at LEAST three or four times as many rounds fired. With three or four times the amount of time testing. And crunching the data. And cost out of pocket.

Which would have meant that we probably would never have gotten through a single test sequence.

So it’s a matter of perspective. Do you want some data which is reasonably solid, and gives a pretty good idea of what is going on with different cartridges over different barrel lengths? Or do you want very accurate, high rigorous data which would never have been produced?

Hmm … let me think about that … 😉


Jim Downey

PS: We haven’t forgotten about the .45 Super/.450 SMC tests — it’s just been a busy summer. Look for it soon.

August 11, 2015 Posted by | .45 ACP, .45 Super, .450 SMC, .460 Rowland, Data, Discussion., General Procedures | , , , , , , , , , , , , , , | 1 Comment

Some “Super” performance out of a Cx4 Storm.

This is the third in a series of informal blog posts about the .45 ACP/Super/.450 SMC testing sequence we conducted over the Memorial Day weekend. You can find the previous posts here and here.

Today we’re going to look at the results out of a stock Beretta Cx4 Storm in (obviously) .45 ACP. I have previously reviewed the Cx4 Storm in .45 ACP for, and it is a great little pistol caliber carbine with a 16.6″ barrel. Here is Keith shooting the one we used for this recent testing:


I want to re-iterate that the Cx4 was completely stock, with no modifications or additions whatsoever for these tests.

As I said with the previous posts about these tests, it’ll be a while before we have all the data crunched and the website updated, but I thought I would share some preliminary thoughts and information through a series of informal posts.

Quick note about the data below: All the ammo used, with the exception of the four * items, were part of our overall test sequence and had three shots made over the Oehler chronograph (which is a double-unit, and automatically records and then averages the two readings), representing a total of 6 data points. I’m just giving the overall averages here; the full data will be available on the website later. The four * ammunition types only include two shots/four data points through the Cx4. That’s because we only had one box of each of this ammo, and were wanting to get data which would be of the greatest use to the largest number of people.

Ammo                                                                               Cx4 Storm

      Buffalo Bore

.45 ACP Low Recoil Std P 185gr FMJ-FN                 997 fps / 408 ft-lbs

.45 ACP Std P 230gr FMJ-RN                                933 fps / 444 ft-lbs

.45 ACP +P 185gr JHP                                       1361 fps / 760 ft-lbs

.45 ACP +P 230gr JHP                                       1124 fps / 645 ft-lbs

.45 Super 185gr JHP                                         1555 fps / 993 ft-lbs

.45 Super 200gr JHP                                         1428 fps / 905 ft-lbs

.45 Super 230gr FMJ                                         1267 fps / 819 ft-lbs

.45 Super 230gr JHP                                         1289 fps / 848 ft-lbs

.45 Super 255gr Hard Cast                                 1248 fps / 881 ft-lbs

      Double Tap

.45 ACP +P 160gr Barnes TAC-XP                        1315 fps / 614 ft-lbs

.450 SMC 185gr JHP                                          1618 fps / 1075 ft-lbs

.450 SMC 185gr Bonded Defense JHP                  1556 fps / 994 ft-lbs

.450 SMC 230gr Bonded Defense JHP                  1298 fps / 860 ft-lbs


Critical Defense .45 ACP Std P 185gr FTX              1161 fps / 553 ft-lbs

Critical Duty .45 ACP +P 220gr Flexlock                 1018 fps / 506 ft-lbs


.45 Super 170gr CF                                           1421 fps / 762 ft-lbs

.45 Super 185gr XTP JHP                                   1578 fps / 1022 ft-lbs

.45 Super 230gr GD JHP                                     1264 fps / 815 ft-lbs

*Federal  HST .45 ACP Std P 230gr JHP                882 fps / 397 ft-lbs

*G2 Research  RIP  .45 ACP Std P 162gr JHP        979 fps / 344 ft-lbs

*LeHigh Defense .45 Super 170gr JHP               1289 fps / 627 ft-lbs

*Liberty  Civil Defense .45 ACP +P 78gr JHP        2180 fps / 822 ft-lbs

Something in particular I want to note: that in comparison to .45 ACP loads (whether standard pressure or +P), a number of the .45 Super/.450 SMC loads gain significantly more from the longer barrel. Compare these numbers to the previous posts of handguns, and you can see what I mean. You typically only gain about 10 – 15% in terms of velocity from the .45 ACP loads in going to a carbine — and this is very much in keeping with our previous testing of that cartridge. But you see upwards of a 30% gain in velocity out of some of the .45 Super/.450 SMC loads … and that translates to a 50% increase in muzzle energy!

A heavy, large projectile hitting with 900 – 1,000 foot-pounds of energy is nothing to sneeze at. Particularly when it comes with very little felt recoil out of this little carbine. That means you can get quick and accurate follow-up shots, which is always an advantage when hunting or using a gun for self/home defense.

As noted previously, we noticed no unusual wear on the Cx4 Storm, though a steady diet of such ammo could increase wear on the gun over time. And the Beretta didn’t have any problems whatsoever feeding, shooting, or ejecting any of the rounds. Where we had experienced some problems with the same ammo out of some of the handguns, there wasn’t a hiccup with the Cx4 Storm.

Look for more results, images, and thoughts in the days to come.

Jim Downey

June 16, 2015 Posted by | .45 ACP, .45 Super, .450 SMC, Data, Discussion., General Procedures | , , , , , , , , , , , , , , , , , , , , , , , , , | 12 Comments

There’s got to be an easier way …

… to get all this brass cleaned:



Have a great weekend, everyone!


Jim Downey

June 12, 2015 Posted by | .45 ACP, .45 Super, .450 SMC | , , , , , , | Leave a comment

Ammo test results in two versions of the Glock 21

This is the first in a series of informal blog posts about the .45 ACP/Super/.450 SMC testing sequence we conducted over the Memorial Day weekend.

Here’s a pic of getting set the first day of shooting:

getting set

It’ll be a while before we have all the data crunched and the website updated, but I thought I would share some preliminary thoughts and information through a series of informal posts. In this post, we’ll see how two different versions of a Gen 4 Glock 21 performed with the ammo. The first version was with the Glock in the standard .45 ACP configuration, the second was with my .460 Rowland conversion kit in place.

The standard configuration has a 4.61″ octagonal polygonal rifling, while the conversion barrel is 5.2″ overall with conventional rifling, threaded, and with a compensator. The .460 conversion also has a heavier recoil spring.

Quick note about the data below: All the ammo used, with the exception of the four * items, were part of our overall test sequence and had three shots made over the Oehler chronograph (which is a double-unit, and automatically records and then averages the two readings), representing a total of 6 data points. I’m just giving the overall averages here; the full data will be available on the website later. The four * ammunition types only include two shots/four data points through the standard Glock 21 configuration — we only had one box of each of this ammo, and were wanting to get data from a range of guns.

Ammo                                                         Glock 21 Standard                   Glock 21 .460 Rowland

      Buffalo Bore

.45 ACP Low Recoil Std P 185gr FMJ-FN                 801 fps / 263 ft-lbs                       792 fps / 257 ft-lbs

.45 ACP Std P 230gr FMJ-RN                                829 fps / 350 ft-lbs                       826 fps / 348 ft-lbs

.45 ACP +P 185gr JHP                                       1132 fps / 526 ft-lbs                     1168 fps / 560 ft-lbs

.45 ACP +P 230gr JHP                                        951 fps / 461 ft-lbs                       974 fps / 484 ft-lbs

.45 Super 185gr JHP                                         1279 fps / 671 ft-lbs                     1299 fps / 693 ft-lbs

.45 Super 200gr JHP                                         1178 fps / 616 ft-lbs                     1203 fps / 642 ft-lbs

.45 Super 230gr FMJ                                         1069 fps / 583 ft-lbs                     1085 fps / 601 ft-lbs

.45 Super 230gr JHP                                         1094 fps / 611 ft-lbs                     1116 fps / 635 ft-lbs

.45 Super 255gr Hard Cast                                 1063 fps / 639 ft-lbs                     1061 fps / 637 ft-lbs

      Double Tap

.45 ACP +P 160gr Barnes TAC-XP                        1103 fps / 432 ft-lbs                     1103 fps / 432 ft-lbs

.450 SMC 185gr JHP                                          1328 fps / 724 ft-lbs                     1351 fps / 749 ft-lbs

.450 SMC 185gr Bonded Defense JHP                  1301 fps / 695 ft-lbs                     1314 fps / 709 ft-lbs

.450 SMC 230gr Bonded Defense JHP                  1097 fps / 614 ft-lbs                     1132 fps / 654 ft-lbs


Critical Defense .45 ACP Std P 185gr FTX               984 fps / 397 ft-lbs                       979 fps / 393 ft-lbs

Critical Duty .45 ACP +P 220gr Flexlock                  945 fps / 436 ft-lbs                       943 fps / 434 ft-lbs


.45 Super 170gr CF                                           1239 fps / 579 ft-lbs                     1253 fps / 592 ft-lbs

.45 Super 185gr XTP JHP                                   1329 fps / 725 ft-lbs                     1348 fps / 746 ft-lbs

.45 Super 230gr GD JHP                                    1075 fps / 590 ft-lbs                     1081 fps / 596 ft-lbs

*Federal  HST .45 ACP Std P 230gr JHP                813 fps / 337 ft-lbs

*G2 Research  RIP  .45 ACP Std P 162gr JHP        942 fps / 319 ft-lbs

*LeHigh Defense .45 Super 170gr JHP              1146 fps / 495 ft-lbs

*Liberty  Civil Defense .45 ACP +P 78gr JHP        1768 fps / 580 ft-lbs

The general trends are pretty clear with the power rising as you go from standard pressure to +P to Super/.450 SMC, and topping out at about 750 foot-pounds of energy in a couple of loads. And it is interesting to note that the 185gr loads seem to be the “sweet spot” in terms of power across the board.

Of course, pure power is just one component for what makes a good ammunition choice. Bullet design & penetration is extremely important when considering a self-defense load. Shootability in your gun is also critical — because if you can’t recover quickly from shot to shot, then you may limit your ability in a stressful situation. Likewise, if the ammo doesn’t function reliably, or damages your gun, that is also a huge factor.

Most of the ammo we tested functioned very well in the Glock in either configuration. This isn’t surprising to anyone who has much familiarity with Glocks which typically will handle just about any ammo under all conditions. We did experience FTFs (failure-to-fire) with a number of the different Double-Tap rounds. Those seemed to have been due to light strikes on the primer, which could have been due to improper primer seating, ‘hard’ primers, or some other factor.

The larger platform of the Glock 21 handled the recoil very well, even from the hottest loads. I was impressed that even with the .460 Rowland conversion in place, with the additional weight of the compensator and the heavy recoil spring, the Glock didn’t have any problems cycling even the lightest loads reliably.

One other note: as discussed in my blog post about the .460 Rowland conversion, full-power .460 Rowland loads tend to cause damage to the magazines. As far as we could tell, the same isn’t true of the full-power .45 Super/.450 SMC loads. Just one magazine (a new one) was used for all these tests, and there was no detectable damage. Nor was there any other damage detected to the gun otherwise, though it is possible a steady diet of loads of that power could cause some over the long term.

Look for more results, images, and thoughts in the days to come.

Jim Downey

June 1, 2015 Posted by | .45 ACP, .45 Super, .450 SMC, .460 Rowland, Data, Discussion., General Procedures | , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

Upcoming .45 test ammo.

With a little luck in about two months we’ll be doing the formal chop tests of .45 Super, .450 SMC, and some additional .45 ACP loads.  We’ve now got all the ammo on hand, and it’ll be a fun (but tiring) weekend. I thought I would share what actual ammo we will be testing, with the manufacturer’s velocity data:

Buffalo Bore
45acp Low Recoil Std P 185gr FMJ-FN      850fps
45acp Std P 230gr FMJ-RN                    850fps
45acp +P 185gr JHP                      1150fps
45acp +P 230gr JHP                 950fps
45 Super 185gr JHP                1300fps
45 Super 200gr JHP                1200fps
45 Super 230gr FMJ                1100fps
45 Super 230gr JHP                1100fps
45 Super 255gr Hard Cast            1075fps

Double Tap
45acp +P 160gr Barnes TAC-XP        1200fps from 5”     1075fps from 3.5”
450 SMC 185gr JHP                1310fps from 5” 1911
450 SMC 185gr Bonded Defense JHP    1310fps from 5” 1911
450 SMC 230gr Bonded Defense JHP    1135fps from 5” 1911

Critical Defense 45acp Std P 185gr FTX    Muzzle 1000fps
Critical Duty 45acp +P 220gr Flexlock    Muzzle 941fps

45 Super 170gr CF                1250fps
45 Super 185gr XTP JHP            1300fps
45 Super 230gr GD JHP            1100fps

In addition to the first data for both the .45 Super and .450 SMC cartridges, this will also almost double the number of .45 ACP loads we’ve tested.  We’re looking forward to it!

Jim Downey

March 7, 2015 Posted by | .45 ACP, .45 Super, .450 SMC, Boberg Arms, Data, Discussion. | , , , , , , , , , , , , , , , , | 6 Comments

No matter which way you look …

…whether back over 2014, or forward into 2015, things are pretty good vis-a-vis BBTI.

Yeah, 2014 was pretty good. We didn’t do any formal testing, though I did some informal testing and a fair number of reviews of new guns or guns which were just new to me.  Having the chance to do those now and again is enjoyable, without having the same deadline pressures I had when I was doing regular columns and reviews for

The numbers also look pretty good for 2014. This blog went from about 12,000 visits in 2013 to 22,000 last year – nearly double. And the BBTI site itself jumped from 243,230 visitors in 2013 to 318,304 visitors in 2014 — an increase of about a third. Visits have also continued to climb pretty steadily from day-to-day, with typically about 1,250 or so daily by the end of the year. Given that we didn’t do any new testing, that’s pretty impressive.

And of course, we’d like to thank all who linked to us over the past year. Here’s the top ten referring sites for 2014, excluding search engines and Wikipedia:


How about the year to come, then?

Well, we’re planning on doing one largish series of tests, to cover .45 Super, .450 SMC, and a number of additional .45 ACP loadings. We haven’t yet set a date for this sequence, but I will post a note about it here and on our Facebook page once plans solidify.

And behind the scenes, improvements continue at the BBTI website. We recently upgraded our hosting set-up, to shift over to more modern software technology. We’ve started discussing how we can do better presentations of our graphs and spreadsheets. I would still very much like to work with someone to develop a mobile app — if you have the necessary skill set to do that, please drop me a note. And whenever someone finds a glitch in our data or how the site renders for them, we try and make the corrections. None of this is very obvious, but it is all a lot of work, and I’d like to once again thank our web guru (and my lovely wife) at Coeurbois Graphic Design for her efforts.

Lastly, thanks to all who use the site regularly, who cite us in online discussions, who help to spread the word. And especially, I would like to thank all who have donated to BBTI in the last year — your tangible contributions make a difference, and help to offset our ongoing costs.

Happy New Year!


Jim Downey

January 2, 2015 Posted by | .45 ACP, .45 Super, .450 SMC, Boberg Arms, Data, Discussion., Links | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Boberg XR9-S: a new little brother for my XR45-S.

As Frank said on Facebook this afternoon:

I knew when you got the 45 you wanted the 9mm too. It was only a matter of time.

Guilty as charged. Look what followed me home today:

Lil brother

Yup, a Boberg XR9-S: a new little brother for my XR45-S. As I did in that post, I thought I’d put up some comparison pix to give a sense of just how small this gun is, even though it really doesn’t feel like it when you hold it or shoot it.

Here it is again with the XR45:

Lil brother 2

And here’s the view that shows the thickness of both:


Yeah, there’s a difference. Here’s the XR9 with a Springfield EMP (also 9mm, 3″ barrel – the XR9 has a 3.35″ barrel):



And with my J-frame in .38 Special:

W J-frame

For grins, here it is on top of the J-frame:

J Top

OK, but how about in comparison to the classic premium pocket 9mm, the Rohrbaugh R9? Here ya go:

W R9

The R9 *is* a fantastic little gun, and I love it. I don’t love shooting it, though. The XR9 wins in that category. It will also handle +P ammo and holds one more round (7+1) than the Rohrbaugh. But it is a bit bigger:

R9 Top

Lastly, here it is with a Bond Arms derringer — a great little gun, with a variety of different barrels available. But there’s still just two shots in the derringer, and it actually weighs about 3 ounces more.

W Bond

While I have shot this gun (it belonged to a good friend), and know it to be dependable, I do still want to make sure that it will be able to reliably digest my preferred SD loads. So more on that to come!


Jim Downey

December 26, 2014 Posted by | .45 ACP, .45 Super, 9mm Luger (9x19), Boberg Arms, Discussion. | , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

First date with the Boberg XR45-S

Over the weekend I posted about picking up my new Boberg XR45-S. This afternoon I took it out for a first “getting to know you” session. More about that in a moment.

First, I want to share a couple of things I discovered in getting the Boberg out of the box, taken apart, and cleaned. This wasn’t strictly necessary, of course, because it came from the factory properly cleaned and lubed. But I’m very much a hands-on learner, and wanted to see what I was dealing with.

The gun is very user-friendly. To take it down for field stripping, you just rack the slide back, turn a lever, then move the slide forward. You don’t need any special tools, or an extra hand, or the strength of the pure. In that sense, it is very much in the modern design, as easy as a Glock. BUT without the need to dry-fire the gun first (which always makes me twitch, and may be the only thing I really dislike about the Glock design.)

Once the slide comes away from the frame, there are only 4 parts which come apart (other than the slide itself). There are no little fiddly bits to get lost or to spring out of sight when you’re not looking. You don’t have to disassemble the gun in a paper bag so that you don’t lose anything. It’s easy, obvious, and once you’ve done it following the owner’s manual, I doubt you’ll ever need to refer to the manual again. You can’t ask for more than that.

So, dis-assembly, cleaning, and re-assembly is all a breeze. Nice!

Having done so, I went through my box of misc. holsters to see what the Boberg might fit into. Because the XR45 is so new there are damned few holster-makers out there who have a holster listed to fit it. And I discovered something VERY interesting: the slide has almost the exact same dimensions as the Glock 21 (and similar Glock models). I first found this out in trying it in this little plastic holster: Glock Sport Combat Holster. I got out my calipers and did some measuring, and found that there was less than a millimeter difference in the width of the slide on the Glock 21 and the Boberg. They also have very similar profiles. And if you measure from the deepest pocket on the backstrap of either gun (where the web of your hand settles in) to the front of the trigger guard, there is less than 2 millimeters difference. Meaning that the Boberg fits almost perfectly into an open-muzzle holster for a Glock 21. Good to know!

OK, so what about going out shooting with the Boberg today?

Overall, I was very happy with how it performed on a first outing. I had a couple of minor glitches with improper feeding and ejection, but I am going to hold off on making any decisions about that until I give it at least another range session to break in. It does seem to fling spent cases somewhere into the next county, and I’m going to have to get used to that since I like to recover those cases and reload them. My very mild reloads wouldn’t cycle properly (the ones I took out are *really* mild), so I learned to take somewhat hotter loads. And the trigger is really  l o n g  … longer than either J-frame I own, and about like the little DAO Rohrbaugh I have. The gun seems to shoot a little to the left for me, but I won’t adjust the sights until I’m more familiar with it. Even so, I was able to consistently ding a 6″ spinner at 10 yards, which is all I expect from a pocket pistol.

How did it handle the different ammos I tried? Quite well, all in all.

I took my Glock 21 (5″ barrel) along for comparison, and shot over a single chronograph. Here are the average numbers:

                                                            Glock 21                                     Boberg

CorBon DPX 185gr +P                          1060FPS                                   1030FPS

Winchester SXZ Training 230gr              850FPS                                      795FPS

Speer GDHP 230gr                                 840FPS                                      760FPS

CorBon JHP 230gr +P                            980FPS                                      900FPS

The CorBon ammo is in line with what we tested formally. So that was good to see.

All together, I put about 100 rounds through the Boberg this afternoon, and wasn’t experiencing any real soreness or tiredness from all that shooting, which is unusual for such a small gun and full power loads. And just for comparison, I shot my .38Sp J-frame with 158gr LSWCHP +P from Buffalo Bore, which is my preferred SD loading for that gun, and the recoil was  worse than with the Boberg. That’s for a ME comparison of 386 ft/lbs for the J-frame to 436 ft/labs for the Boberg with the 185gr CorBon loading.

So, that’s that. Already, the Boberg is equal to the J-frame, in my eyes. I shoot it as well. It has the same, or greater, amount of power. Reloading is faster. And it holds 6+1 to start. I still want to put it through its paces before I trust it as a carry gun, and there will be times when I still prefer to have the revolver, but already I can see that the Boberg is going to be a very nice addition to my collection.

More to come.

Jim Downey

December 8, 2014 Posted by | .38 Special, .45 ACP, Boberg Arms, Discussion., General Procedures | , , , , , , , , , , , , , , , | 4 Comments

Boberg XR45

I’ve written about the innovative Boberg Arms XR9 previously. Here’s the take-away from my review:

This gun is a winner. It is well designed, and well made. The innovative design makes your brain hurt when you first see it. But the recoil is nothing like what you get from any other “pocket gun”, even when shooting full +P defensive ammunition. Usually with a pocket gun, you trade off the pain of shooting it a lot for the convenience of being able to carry it easily. With the Boberg, you don’t have to make that trade-off. I honestly wouldn’t be bothered at all by running a couple hundred rounds through this gun at the range.

Well, guess what followed me home today.

No, not an XR9. Something a little … bigger:


Yup, one of the new XR45s.

Here’s a pic of one from my outing with the other BBTI guys a few weeks ago:


It’s a little hard to tell how big the gun is in that pic. Here it is with some others:

all 4

Starting in the upper left corner and going clockwise, those are: A Steyr S9 in 9mm, a Springfield EMP in 9mm, the Boberg XR45 in .45ACP, and a S&W J-frame in .38sp.

Here’s the Boberg back to back with the Steyr:

with S9

With the EMP:

with EMP

And with the J-frame:

with j-frame

And just for grins, here’s the Boberg with the J-frame sitting right on top of it:

on top

Yeah, the 6+1 Boberg is actually smaller than the three other compact pistols. And it has a longer barrel than all three — 3.75″ on the Boberg, compared to 3.5″ in the Steyr, 3.0″ in the EMP, and 1.875″ on the J-frame.

How does it do this? Because of the innovative … some would say just plain weird … way the feed mechanism works. For the best explanation, take a look at the animation on the Boberg homepage, but basically as the slide comes back, it grabs a new cartridge out of the magazine by the rim and then positions it into the chamber. Yeah, you put the bullets in the magazine nose first. Like this:

with mag

And here’s a detail of the top of the loaded mag:

mag loaded

It takes some getting used to, I admit.

Now, while the Boberg is actually smaller in overall size than the other guns, it still has some heft to it: 22 ounces, as opposed to both the Steyr and the EMP at 26. The J-frame shown is a Model M&P 360 with the Scandium frame, so it comes in under 14 ounces. All of those are unloaded weight.

How does it shoot? Like this:

“Not bad at all.”

That was with .45 ACP+P high-end self-defense rounds.

Since I just got mine, it will take a while to find out all the little quirks that it has. But based on shooting one a few weeks ago, and in a much longer session with the 9mm version, I have little doubt that I will be very pleased with it. I’ve already poked around my selection of holsters, and found that the XR45 fits perfectly into a little belt slide holster I have for my Glock 21 Gen 4, as well as into a Mika Pocket Holster I use for the J-frame.

Jim Downey

December 6, 2014 Posted by | .38 Special, .45 ACP, 9mm Luger (9x19) | , , , , , , , , , , , , , , , , , , , , , , | 7 Comments

Six shooter.

Well, well, well, BBTI made it to six years of shooting fun and research!

Yup, six years ago today we posted the first iteration of Ballistics By The Inch, and included data for 13 different handgun cartridges. Since then we’ve continued to expand on that original research, including some extensive testing on how much of an effect the cylinder gap on revolvers has, what performance differences you can expect from polygonal over traditional land & groove rifling, and added another 9 cartridges, as well as going back and including a very large selection of real world guns in all the different cartridges. This blog has had 100,000+ visitors and the BBTI site itself has had something like 25 – 30 million visits (the number is vague because of changes in hosting and record-keeping over time).

We’ve had an impact. I’ve seen incoming links from all around the world, in languages I didn’t even recognize. There’s probably not a single firearms discussion group/blog/site out there which hasn’t mentioned us at some point, and our data is regularly cited in discussions about the trade-offs you make in selecting one cartridge or barrel length over another. I’ve answered countless emails asking about specific points in our data, and have been warmly thanked in return for the work we’ve done. And on more than a few occasions people have pointed out corrections which need to be made, or offered suggestions on how we could improve the site, sometimes providing the results from their own crunching of our data.

When we started, it was fairly unusual to see much solid information on ammo boxes about how the ammunition performed in actual testing. Now that information is common, and expected. Manufacturer websites regularly specify real performance data along with what kind of gun was used for that testing. And the data provided has gotten a lot more … reliable, let’s say. We’ve been contacted by both ammo and firearms manufacturers, who have asked if they can link to our data to support their claims of performance — the answer is always “yes” so long as they make it clear that our data is public and not an endorsement of their product. And we’ve never taken a dime from any of those companies, so we can keep our data unbiased.

And we’re not done. We have specific plans in the works to test at least one more new cartridge (and possibly revisit an old favorite) in 2015. I try to regularly post to the blog additional informal research, as well as sharing some fun shooting and firearms trials/reviews. There’s already been one firearms-related patent issued to a member of the BBTI team, and we’ll likely see several more to come. Because we’re curious guys, and want to share our discoveries and ideas with the world.

So, onward and upward, as the saying goes. Thanks to all who have cited us, written about us, told their friends about us. Thanks to all who have taken the time to write with questions and suggestions. And thanks to all who have donated to help offset the ongoing costs of hosting and testing — it makes a difference, and is appreciated.


Jim Downey

November 28, 2014 Posted by | .22, .223, .22WMR, .25 ACP, .30 carbine, .32 ACP, .32 H&R, .327 Federal Magnum, .357 Magnum, .357 SIG, .38 Special, .380 ACP, .40 S&W, .41 Magnum, .44 Magnum, .44 Special, .45 ACP, .45 Colt, .460 Rowland, 10mm, 6.5 Swedish, 9mm Luger (9x19), 9mm Mak, 9mm Ultra, Anecdotes, Data, Discussion., General Procedures, Links, Shotgun ballistics | , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Short and fun.

Another quick post about getting together for a bit of shooting weekend before last. This time, let’s look at some semi-auto carbines.

The first two are a pair of Beretta CX4 Storms, one in 9mm and the other in .45ACP. You can see them here with the pump guns:

Table selection

I’ve previously reviewed the Cx4, and would only add that each time I shoot one of these guns I just enjoy the hell out of them. At just under 30″ overall length and weighing 5.75 pounds, they’re light, easily maneuverable, and very ergonomic. Great little pistol caliber carbines.

Now, see that gun partially visible off to the right in the pic above? And here’s another shot of it with the other pumps and carbines:


See that short little thing third from the left? Yeah, it’s an AGM-1 carbine in 9mm. Here’s a much better pic of it:


It’s an old-school bullpup, made in the 1980s in Italy. None of us had seen one before, and since it was a used gun it came with no paperwork or information. In picking it up, it felt almost too small to be civilian-legal (I mean non-NFA regulated), but the overall length is a tad over 26″ and the barrel is barely 16 and 1/8th inch. It has a little more heft than the Cx4, and most of the parts are heavy stamped steel. It uses Browning Hi-Power magazines. Interestingly, it was intended to be a modular design you could easily convert over to either .22lr or .45ACP, though I doubt the parts to do so are very common now.

But it was a surprisingly nice little gun to shoot. And when I say little, I mean it — damned thing is shorter than my arm. It was accurate, had a nice trigger, and almost no recoil. All of us were able to put a magazine full of bullets into a one-inch hole at 11 yards the first time we picked it up and tried it. Cool gun. If you ever happen to stumble across one in a shop, don’t be afraid to give it a try.


Jim Downey

November 25, 2014 Posted by | .22, .45 ACP, 9mm Luger (9x19), Anecdotes | , , , , , , , , , , , , , , , | 1 Comment

Confirmation of the .460 Rowland performance.

John Ervin at Brass Fetcher Ballistic Testing has just put up a new page about his testing of the .460 Rowland cartridge. As I have explained in the past,  our work at BBTI is intended to be an overview of how ballistic performance varies over barrel length — it is just a quick survey to get an idea of the general trends, not meant to be an in-depth examination of a specific cartridge.

But in-depth testing is exactly what Ervin does, using a larger sample size, ballistic gelatin, and high-speed videography. And as a result, his much more detailed analysis is more useful for getting into the details of a given cartridge out of a specific barrel length. And it is really good to see that his results confirm what I have been saying all along: that if you carry a .45, you should instead be carrying a .460 Rowland.

What specifics? Take a look at the performance of Speer 230gr Gold Dot HP .45ACP in terms of foot-pounds of kinetic energy transfer into 20% ballistic gel:


Pretty good, eh? It’s what we expect from the .45ACP: a solid energy dump and reasonable penetration.

Now let’s take a look at the same chart, but with the Speer 230gr Gold Dot HP in .460Rowland:

The curves don’t look that different on first glance, but pay close attention to the scale there on the left axis of each one: where the .45ACP tops out at about 72 ft/lbs about 2″ into the gel, the .460Rowland tops out at about 335 ft/lbs just before 2″. That’s more than 4x the energy transfer.

In fact, at 5″ of penetration, the .460Rowland is still dumping about as much energy as the .45ACP does at the maximum.

But there’s more than simple energy transfer involved in terminal ballistic performance. There’s also how well the bullet is designed, and whether it expands properly. This can be a big concern in “over-driving” a bullet, so that it breaks apart. Well, Ervin’s data also covers these comparisons quite well. For the two specific rounds cited above, the .45ACP expanded to 0.344 square inches of frontal surface, and was still 229.5gr of weight. And the .460Rowland expanded to 0.526 square inches of frontal surface, and was still 221.3gr of weight.

There’s a *LOT* more information at Brass Fetcher Ballistic Testing. Ervin has an extensive 17 page Ammunition Performance Data report in .pdf format which contains a ton of images, video, and data — more than enough to keep even a data-junkie like me busy for a long time. I urge you to take a good look at it, and to consider the thoughts which Ervin shares about this cartridge. But I will leave you with his opening sentence which sums it up very nicely:

The 460 Rowland represents the pinnacle of handgun calibers for self-defense.



Jim Downey

May 1, 2014 Posted by | .45 ACP, .460 Rowland, Data, Discussion., Links | , , , , , , , , , , , , , , , , , | Leave a comment