Ballistics by the inch

Reprise: Share and share alike — swapping weapons at the range.

Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 6/09/2011. Some additional observations at the end.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Colt Anaconda

“Wow! What the hell was that?”

I smiled, looked over at the young guys two lanes over at the public range. They had been shooting one guy’s Glock 19. I’d kept an eye on them, as I do whenever anyone else is there the same time I am. They’d been safe in how they had handled the gun, how they conducted themselves. “.44 Magnum. Wanna try it?”

“Really?” asked the one guy while the other cleared the Glock, set it down on the bench with the slide open . We were the only people on the pistol side of the range. They came walking over.

I popped the spent casings from the cylinder, dropped them in a plastic bag. Leaving the cylinder open, I handed my Anaconda to the first guy. “Sure. Ever shot a revolver?”

* * * * * * *

I don’t often go shooting at the public range. Oh, it’s close to my house and therefore convenient, but I also belong to a private club about the same distance away. However, now and then I’ll want to get out to do some shooting, but the private club will be reserved for training/classes, so I’ll slip out to the State range for a bit of recoil therapy. It’s a nice set-up, with concrete paving and nice large concrete shooting benches/tables under protection from the weather.

When I do go there, in addition to what I want to get some practice with, I’ll usually take along something a little bit unusual. Maybe a flintlock. Or the Anaconda. A derringer. My Sub2000. Something most people don’t see regularly.

It gives me an excuse to talk to people, if they express an interest in whatever it is I have with me.

* * * * * * *

“Ever shot a revolver?”

“Um, no,” said the first guy. He looked at his buddy. His buddy looked at me, shook his head.

“Well,” I said, “they’re old-school, but a lot of people still like ‘em. They’re simpler to shoot in some ways, and you can get more power in a revolver than most semis. ”

“Is this the gun that Dirty Harry used?” asked the second guy, holding the gun that his buddy had passed to him.

“Close. This is a Colt Anaconda. Dirty Harry had a Smith & Wesson Model 29. But they’re the same caliber – both .44 Magnums – and about the same size.” I took the gun back, gave them a quick lesson in how it worked, how to shoot it safely. I started ‘em with light practice loads, then a cylinder of full magnums.

A few minutes later they were both grinning like kids on Christmas.

* * * * * * *

It’s not so much that I want to meet people. There are plenty of ways to do that, and I have a lot of friends and acquaintances.

Rather, it’s a way of sharing something I know about and enjoy. Maybe do a little teaching. Maybe do a little learning. I do know a bit about guns, but there’s always more to learn.

And usually I find that if I offer to let people try my guns out, they’ll return the favor. I don’t care how good a collection you have – no one has everything.

* * * * * * *

The boom of the last full-house .44 Magnum echoed around us as the fellow opened the cylinder and handed my gun back to me. Like I said, he and his buddy were grinning like crazy.

“Man, that was great! Thanks!”

“Sure.”

“Wanna try my Glock?”

“Yeah, if you don’t mind.” I’ve shot plenty of Glocks before, and own a couple in .45 ACP, so this was nothing new to me. But it was a way of showing my respect for these guys.

We walked over to their lane. He handed me the third-generation Glock 19. It’d been well used, but seemed to be in pretty good shape. “It’s my concealed carry gun.”

“Nice. Good gun for that.”

“Thanks,” he said. I swear, he stood a little taller.

* * * * * * *

Maybe it’s a Midwestern thing. I haven’t been to shooting ranges at a lot of places elsewhere in the country. But here, whenever you go out shooting with people, everyone has to try everything. And if people seem sane at the range, many times I’ve seen folks share guns with strangers. Yeah, you wanna be a bit careful about who you hand your guns over to, but if they’ve been dangerous or inept, I’ll usually find a reason to not stick around the range very long anyway.

I’m curious – how is it in your neck of the woods? Do people share? Do you offer to let others try your guns, or ask to try theirs?

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When I originally wrote this, I hadn’t yet been to New Zealand. But as noted in this series I did for Guns.com, I discovered that sharing guns with strangers is common there as well. And since then I have also been out to other parts of the US, and seen much the same. It’s not always the case, and as noted above you have to exercise some judgment, but it seems to be a fairly widespread practice. I consider this to be a good thing.

Jim Downey

July 2, 2017 Posted by | .44 Magnum, .45 ACP, 9mm Luger (9x19), Revolver | , , , , , , , , , , , , , , | Leave a comment

Reprise: Is Muzzle Energy Really a Measure of Handgun Effectiveness?

Prompted by my friends over at the Liberal Gun Club, this is another in an occasional series of revisiting some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is an article I wrote for Guns.com, and it originally ran 2/13/2012. Some additional observations at the end.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Would you rather be shot with a modern, Jacketed Hollow Point bullet from a .32 ACP or have someone throw a baseball at you? Seems like a silly question, doesn’t it? But did you know that the ‘muzzle energy’ of the two is about the same? Seriously, it is and that’s just one reason why trying to use muzzle energy as a measurement of handgun effectiveness is problematic.

Calculating Muzzle Energy

First off, what is ‘muzzle energy’ (ME)? Wikipedia has a pretty good description and discussion of it. Here’s the simple definition:

Muzzle energy is the kinetic energy of a bullet as it is expelled from the muzzle of a firearm. It is often used as a rough indication of the destructive potential of a given firearm or load. The heavier the bullet and the faster it moves, the higher its muzzle energy and the more damage it will do.

For those who are trying to remember your high school physics, kinetic energy is the energy (or power) of something moving. You can calculate kinetic energy using the classic formula:

E = 1/2mv^2

Which is just mathematic notation for “Energy equals one-half the mass of an object times the square of its velocity.”

Doing the actual calculations can be a bit of a pain, since you have to convert everything into consistent units, but the formula is there on the Wikipedia page (and can be found elsewhere) if you want to give it a go. Fortunately, there are a number of websites out there which will calculate muzzle energy for you – you just plug in the relevant numbers and out comes the result. We also have muzzle energy graphs for all the calibers/ammunition tested at BBTI.

Batter up?

If you go through and check all the muzzle energy numbers for handguns with a 6″ or less barrel which we’ve tested (BBTI that is), in .22, .25. or .32, you’ll see that all except one (and you’ll have to go to the site to see which one it is) comes in under 111 foot-pounds.

Why did I choose that number? Because that would be the kinetic energy of a baseball thrown at 100 mph. Check my numbers: a standard baseball weighs 5.25 ounces, which is about 2,315 grains. 100 mph is about 147 fps. That means the kinetic energy of a baseball thrown at 100 mph is 111 ft-lbs.

Now, we’re not all pro baseball pitchers. And I really wouldn’t want to just stand there and let someone throw a baseball at me. But I would much rather risk a broken bone or a concussion over the damage that even a small caliber handgun would do.

The Trouble with Muzzle Energy

And therein lies the problem with using muzzle energy as the defining standard to measure effectiveness: it doesn’t really tell you anything about penetration. A baseball is large enough that even in the hands of Justin Verlander it’s not going to penetrate my chest and poke a hole in my heart or some other vital organ. If I catch one to the head, it may well break facial bones or even crack my skull, but I’d have a pretty good chance of surviving it.

Now, I think muzzle energy is a useful measure of how much power a given handgun has. That’s why we have it available for all the testing we’ve done on BBTI. But it is just one tool, and has to be taken into consideration with other relevant measures in order to decide the effectiveness of a given gun or caliber/cartridge. Like measures such as depth of penetration. And temporary and permanent wound channels. And accuracy in the hands of the shooter. And ease of follow-up shots. And ease of carry.

I’ve seen any number of schemes people have come up with to try and quantify all the different factors so that you can objectively determine the “best” handgun for self defense. Some are interesting, but I think they all miss the point that it is an inherently subjective matter, where each individual has to weigh their own different needs and abilities.

Sure, muzzle energy is a factor to consider. But I think the old adage of “location (where a bullet hits) is king, and penetration is queen” sums it up nicely.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In the five years since I wrote that, my thinking has evolved somewhat. Well, perhaps it is better to say that it has ‘expanded’. I still agree with everything above, but I’m now even more inclined to go with a relatively heavy bullet for penetration over impressive ME numbers. I think that comes from shooting a number of different brands of ammo where the manufacturer has chosen to go with a very fast, but very light bullet to get an amazing ME, with the argument that this is more likely to cause some kind of terminal shock, citing tests showing significant ‘temporary wound channels’ and such in ballistic gel.

But you really can’t cheat physics. If you dump a lot of kinetic energy very quickly into creating a temporary wound channel, then you have less energy for other things. Like penetration. Or bullet expansion. And those are factors which are considered important in how well a handgun bullet performs in stopping an attacker. That’s why the seminal FBI research paper on the topic says this:

Kinetic energy does not wound. Temporary cavity does not wound. The much discussed “shock” of bullet impact is a fable and “knock down” power is a myth. The critical element is penetration. The bullet must pass through the large, blood bearing organs and be of sufficient diameter to promote rapid bleeding. Penetration less than 12 inches is too little, and, in the words of two of the participants in the1987 Wound Ballistics Workshop, “too little penetration will get you killed.” Given desirable and reliable penetration, the only way to increase bullet effectiveness is to increase the severity of the wound by increasing the size of hole made by the bullet. Any bullet which will not penetrate through vital organs from less than optimal angles is not acceptable. Of those that will penetrate, the edge is always with the bigger bullet.

 

Now, you can still argue over the relative merits of the size of the bullet, and whether a 9mm or a .45 is more effective. You can argue about trade-offs between recoil & round count. About this or that bullet design. Those are all completely valid factors to consider from everything I have seen and learned about ballistics, and there’s plenty of room for debate.

But me, I want to make sure that at the very minimum, the defensive ammo I carry will 1) penetrate and 2) expand reliably when shot out of my gun. And if you can’t demonstrate that in ballistic gel tests, I don’t care how impressive the velocity of the ammo is or how big the temporary wound cavity is.

So I’ll stick with my ‘standard for caliber’ weight bullets, thanks. Now, if I can drive those faster and still maintain control of my defensive gun, then I will do so. Because, yeah, some Muzzle Energy curves are better than others.

 

Jim Downey

April 16, 2017 Posted by | .22, .25 ACP, .32 ACP, .45 ACP, .45 Super, 9mm Luger (9x19), Data, Discussion., Links | , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Reprise: Ammo by the Numbers: What Do All Those Numbers on My Box of Ammo Mean?

My friends over at the Liberal Gun Club asked if they could have my BBTI blog entries cross-posted on their site. I said yes, and got to thinking that perhaps I would revisit some of my old articles which had been published elsewhere over the years, perhaps lightly edited or updated with my current thoughts on the topic discussed. This is the first article I wrote for Guns.com, and it originally ran 2/9/2011. Some additional observations at the end.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

One of the most bewildering moments for a relatively novice shooter is selecting ammunition. Go online, or into a big-box store, or even into your local gun shop and you can be confronted with a huge array of choices in any given caliber or cartridge design. Most of the boxes have a sort of ‘code’ on the side; some have little charts or even graphs on the bottom. But which one do you want? What does this stuff even mean? Do claims of a certain velocity or energy tell you anything?

Let’s take a look at some terms, first.

Most prominently displayed figure on the box, is the cartridge: .45 Auto, .357 Magnum, 9mm Luger and so forth. There can be some confusion on this, so be sure to check your gun to see what it says on the side of the barrel or slide, or is specified in the owner’s manual  – that’s the only kind of ammunition you want. There is a difference between a .45 Colt and a .45 Auto, or a .357 Magnum and a .357 Sig, just for a couple of examples – make sure you get the kind of cartridge that your gun handles. It may seem silly to bring this up, but even experienced shooters can accidentally grab the wrong box of ammo sometimes – I have made this very mistake myself.

Next you’ll find a number, listed with either “grain” or just “gr.” This tells you the weight of the actual bullet.

Then there will be some variety of description of the bullet, indicating intended use. It could say “target” or “range” or just “ball” – all of these mean a basic bullet, probably with a slightly rounded nose, or perhaps a conical shape, or just a simple cylinder which might also have a small flat conical front (sometimes called a semiwadcutter or “SWC”). The actual bullet may be just lead or may have a “full metal jacket” – a thin layer of some harder metal such as a copper alloy. “Hunting” usually means a “JSP” – jacketed soft point. “Self-defense” usually indicates some variety of “JHP” – jacketed hollow point. Some premium self-defense ammunition uses proprietary terms such as “DPX,” “Hydra-Shok,” and “GDHP” but these are largely marketing terms you don’t need to worry about too much, at least at first.

Terms “+P” or “+P+” indicate that the cartridge is somewhat more powerful (“over-pressure”) than standard for that cartridge. Most modern guns can handle a limited diet of such cartridges, but older guns may not. If in doubt, check your gun’s owner’s manual or ask a gunsmith.

Particularly on premium defensive ammunition you may see some indication of the “velocity” or “energy” of the cartridge. Here in the US, velocity is given in “fps” – feet per second. “Energy” is given in “ft/lbs” – foot-pounds (the amount of energy needed to lift one pound one foot off the ground, not the confusingly similar term used to measure torque). The faster a bullet, and the more it weighs, the more kinetic energy it has. Sometimes a little chart will be given, showing velocity and energy at the muzzle of the gun, then at one or more distances (bullets lose velocity and energy due to air resistance).

While more velocity and more energy are generally good things for defensive ammunition, don’t get too hung up on these numbers. Why? Because the manufacturers don’t really give you enough information to compare one ammunition to another one easily. They don’t tell you what the barrel length used was (and this can have a huge impact on velocity). They don’t tell you the type of gun used (a revolver and a semi-auto both have different effects on the speed of a bullet). And they don’t tell you the type of barrel used (some barrels are known to be ‘faster’ than others.)

Then why bother at all with this information? Because it can help in some instances. If all you’re going to do is just use your gun for ‘plinking’, you can probably get whatever ammunition is cheapest and suitable for your gun.

But if you’re after accurate and consistent target shooting, or use your gun for hunting or defensive purposes, you want to be choosy. Once you find ammunition you and your gun like, you want to try to stay as close to that ammunition as you can. What do I mean by ammunition you and your gun like?

Some guns will feed and fire some ammunition better than others. The shape of the bullet can make a difference. The weight of the bullet can make a difference. The amount of energy can make a difference.

Ammunition with greater energy will cause your gun to have greater recoil (‘kick’), and that can make it more difficult to shoot. Ammunition which is touted for being “reduced recoil” likely has less energy than other ammunition, that can make it less effective for hunting or self-defense.

Using the same amount of gunpowder, a lighter bullet will go faster than a heavier one. But a heavier bullet will generally slow down less due to air resistance, and will generally penetrate deeper into whatever you are shooting at.

“Target,” “ball,” and similarly-termed ammo is usually less expensive, and is good for practice. It is less ideal for self-defense purposes, because the bullet does not expand the way a hollow point or “JHP” is designed to when it hits flesh. “Hunting” ammunition is usually designed to expand some, but to still penetrate deeply.

Where should you begin?  Start out seeing what ammunition others who own a gun like yours use. None of your buddies shooting a gun like yours?  Maybe do a little checking online – many firearms forums post anecdotal information showing testing members have done, and there are some good sites that do more rigorous testing for velocity and penetration. See what is recommended, and give it a try.

So, beyond the numbers, what’s a good general rule when pairing ammo with a gun?  I’m of the opinion that, ideally, you should try out a box or two of different types of premium ammunition first to see which brands and type your gun likes. Using this as your guide, you can then launch the search for less expensive practice ammunition that is similar in weight and velocity, because that will behave similarly to your premium ammo in terms of point-of-impact and felt recoil.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Since I wrote this six years ago, there have been some noticeable changes in the ammunition industry, and now most manufacturers provide at least some basic information as to how the numbers they use were gathered — what barrel length, sometimes what gun they used — to make it a little easier for a consumer to know what they are buying. I have been told directly by some engineers and sales people at different companies that this is due to BBTI‘s testing and publication of our data, which has forced manufacturers to be more forthcoming.

Something else we’ve experienced in the intervening years was the Great Ammo Shortage (which for the most part has now passed). But it taught the wisdom of always keeping a bit more ammo on hand than you might otherwise need for a single trip to the range, to help ride out similar shortages in the future. I’ll address ammo storage issues in a future blog post.

Jim Downey

March 14, 2017 Posted by | .357 Magnum, .357 SIG, .45 ACP, .45 Colt, 9mm Luger (9x19), Data, Discussion. | , , , , , , , , , , , , , , , , , | 2 Comments

Comparison shopping.

Remember this graph comparing Muzzle Energy (ME)?

megraph

 

Well, a discussion elsewhere got me to thinking …

So, let’s take a look at .45 Super:

45superme

 

See what I see? Yeah, at 3″ and 4″ all the .45 Super loads are superior in terms of ME over all the other cartridges in the top graph. At 5″ the .357 Mag catches up with some of the .45 Super loads, and at 6″ it is in the center of the pack.

To really do the comparison right, I’d need to average all the .45 Super loads, then add them directly to the first graph, but that’s more time and trouble than I want to take. But my point is that of all the ‘conventional’ CCW-caliber/size guns, it looks like the .45 Super is at the top of the pile. We did formal testing of just one .460 Rowland, and it is comparable to the .45 Super at those barrel lengths (though I know from informal testing that some other loads are more powerful). You have to step up to full .44 Mag to beat either the .357 Mag or .45 Super.

Interesting.

Jim Downey

December 26, 2016 Posted by | .357 Magnum, .357 SIG, .380 ACP, .44 Magnum, .45 ACP, .45 Super, .460 Rowland, 10mm, 9mm Luger (9x19), Data, Discussion. | , , , , , , , , , , , , , , , , , , , , | 1 Comment

Join the party.

All along, we’ve said that if someone wanted to take the time, trouble, and expense to do some additional research along the lines of our protocols, that we’d be happy to include their data on our site. This is particularly true if it helped expand the selection of “real world guns” associated with the data for a given caliber/cartridge. Well, for the first time someone has expressed an interest in doing just that, prompting us to come up with an outline of what standards we feel are required for making sure it relates to our previous tests.

The biggest problem is that ammo manufacturers may, and do, change the performance of their products from time to time. This is why we have on occasion revisited certain cartridges, doing full formal chop tests in order to check how specific lines of ammo have changed. That gives us a benchmark to compare other ammo after a period of several years have passed, and shows how new tests relate to the old data.

But without going to such an extent, how can we be reasonably sure that new data collected by others using their own firearms is useful in comparison to our published data?

After some discussion, we feel that so long as any new testing includes three or more of the specific types of ammo (same manufacturer, same bullet weight & design) we had tested previously, then that will give enough of a benchmark for fair comparison. (Obviously, in instances where we didn’t test that many different types of ammo in a given cartridge, adjustments would need to be made). With that in mind, here are the protocols we would require in order to include new data on our site (with full credit to the persons conducting the tests, of course):

  1. Full description and images of the test platform (firearm) used in the tests. This must specify the make, model number, barrel length, and condition of the firearm. Ideally, it will also include the age of the firearm.
  2. That a good commercial chronograph be used. Brand isn’t critical — there seems to be sufficient consistency between different models that this isn’t a concern. However, the brand and model should be noted.
  3. Chronographs must be positioned approximately 15 feet in front of the muzzle of the firearm used to test the ammo. This is what we started with in our tests, and have maintained as our standard through all the tests.
  4. That five or six data points be collected for each type of ammo tested. This can be done the way we did it, shooting three shots through two different chronographs, or by shooting six shots through one chronograph.
  5. All data must be documented with images of the raw data sheets. Feel free to use the same template we used in our tests, or come up with your own.
  6. Images of each actual box of ammo used in the test must be provided, which show the brand, caliber/cartridge, and bullet weight. Also including manufacturer’s lot number would be preferred, but isn’t always possible.
  7. A note about weather conditions at the time of the test and approximate elevation of the test site above sea level should be included.

We hope that this will allow others to help contribute to our published data, while still maintaining confidence in the *value* of that data. Please, if you are interested in conducting your own tests, contact us in advance just so we can go over any questions.

 

Jim Downey

September 9, 2016 Posted by | .22, .223, .22WMR, .25 ACP, .30 carbine, .32 ACP, .32 H&R, .327 Federal Magnum, .357 Magnum, .357 SIG, .38 Special, .380 ACP, .40 S&W, .41 Magnum, .44 Magnum, .44 Special, .45 ACP, .45 Colt, .45 Super, .450 SMC, .460 Rowland, 10mm, 9mm Luger (9x19), 9mm Mak, 9mm Ultra, Anecdotes, Data, Discussion., General Procedures | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

The illusion of precision.

Got an email which is another aspect of the problem I wrote about recently. The author was asking that we get more fine-grained in our data, by making measurements of barrel lengths by one-eighth and one-quarter inch increments. Here’s a couple of relevant excerpts:

what more is really needed, is barrel lengths between 1-7/8 and 4-1/2″.
because of the proliferation of CCW and pocket pistols, and unresolved
questions about short barrel lengths that go all over between 2 and 3.75″,
and snubby revolvers that may be even shorter.

* * *

with that amount of precision, not only would you have data covering all
lengths of short barrels, but you could fabricate mathematical curves that
would predict velocities for any possible barrel length, metric or
otherwise, given the particular ammo.

 

It’s not an unreasonable thought, on the surface. Our data clearly shows that the largest gains in bullet velocity always come in length increases of very short barrels for all cartridges/calibers. So why not document the changes between, say, a 4.48″ barrel and a 4.01″ one? That’s the actual difference between a Glock 17 and a Glock 19, both very popular guns which are in 9mm. Or between a S&W Model 60 with a 2.125″ barrel and a S&W Model 360PD with a 1.875″ barrel?

Ideally, it’d be great to know whether that half or quarter inch difference was really worth it, when taking into consideration all the other factors in choosing a personal defense handgun.

The problem is that there are just too many different variables which factor into trying to get really reliable information on that scale.

Oh, if we wanted to, we could do these kinds of tests, and come up with some precise numbers, and publish those numbers. But it would be the illusion of precision, not actually useful data. That’s because of the limits of what we can accurately measure and trust, as well as the normal variations which occur in the manufacturing process … of the guns tested; of the ammunition used; of the chronograph doing the measurements; even, yes, changes in ambient temperature and barometric pressure.

That’s because while modern manufacturing is generally very, very good, nothing is perfect. Changes in tolerance in making barrels can lead to variation from one gun to the next. Changes in tolerance in measuring the amount of gunpowder which goes into each cartridge (as well as how tight the crimp is, or even tweaks in making the gunpowder itself) mean that no two batches of ammunition are exactly alike. And variations in making chronographs — from the sensors used, to slight differences in positioning, to glitches in the software which operate them — mean that your chronograph and mine might not agree on even the velocity of a bullet they both measure.

All of those little variations add up. Sometimes they will compound a problem in measuring. Sometimes they will cancel one another out. But there’s no way to know which it is.

This is why we’ve always said to consider our data as being indicative, not definitive. Use it to get a general idea of where your given choice of firearm will perform in terms of bullet velocity. Take a look at general performance you can expect from a brand or line of ammunition. Compare how this or that particular cartridge/caliber does versus another one you are considering.

But keep in mind that there’s no one perfect combination. You’re always going to be trading off a bunch of different factors in choosing a self-defense tool.

And never, ever forget that what matters most — FAR AND ABOVE your choice of gun or ammunition — is whether or not you can use your firearm accurately and reliably when you need to. Practice and training matters much more than whether or not you get an extra 25, or 100, or even 500 fps velocity out of whatever bullet is traveling downrange. Because if you can’t reliably hit your target under stress, no amount of muzzle energy is going to do you a damn bit of good.

 

Jim Downey

If you want more information about how accuracy and precision can be problematic, this Wikipedia entry is a good place to start.

September 6, 2015 Posted by | .357 Magnum, .38 Special, 9mm Luger (9x19), Data, Discussion., General Procedures | , , , , , , , , , , , , , , , , | 2 Comments

First date with the Boberg XR9-S.

As I noted a couple of weeks ago, I picked up a ‘little brother‘ for my Boberg XR45-S. Here they are again:

Lil brother

Well, we’re having another delightful warm spell here in mid-Missouri, so yesterday afternoon I took advantage of it and went out to the range to give the little guy a try.

As I noted before, I have actually shot this particular gun a couple of times previously, and just loved it. But it had been a while, and I couldn’t remember specifically what ammo types we had used. So I packed up what variety of 9mm loads I had on hand, along with my chrono, and went to see whether anything had changed.

Because of the way they operate, the Boberg pistols have a tendency to be very particular about what ammo they like. Ammo which doesn’t have a sufficient crimp is prone to separate (the case being jerked away from the bullet). It’s an issue which is well known, and there’s a list of compatible ammo for both the XR9 and the XR45. But while those crowd-sourced lists are useful, the final word is always what specific ammo your particular gun will handle. For me, that’s particularly something I want to determine for any self-defense pistol before I will carry it.

Full details to follow, but for those who just want the short version: oh baby! The XR9 ate everything I fed it without a problem. Including my standard 9mm reloads. No mis-feeds. No bullet separation. No problems. And it was a real joy to shoot, which isn’t something I normally say about a pocket pistol handling full-power SD loads.

OK, for those want the details …

Below are informal* chrono numbers for seven different ammo types I had. These are all for the Boberg. But I also ran a few through my Steyr S9 for comparison, which usually just had an advantage of about 10 fps over the Boberg (the barrel on the Steyr is about a quarter of an inch longer). If that much.

  • Buffalo Bore 124gr JHP +P+                                             1,230 fps
  • Federal 124gr Hydra Shok JHP                                           1,025 fps
  • Reloads. (4.4gr HP-38, 124gr Rainier FMJ bullet)                        1,020 fps
  • Remington 124gr FMJ                                                       1,040 fps
  • Speer GDHP 115gr JHP                                                      1,210 fps
  • Speer GDHP 124gr JHP                                                      1,100 fps
  • Speer GDHP 124gr JHP +P ‘Short barrel’                           1,150 fps

As you can see, all pretty respectable numbers. And in keeping with both the claims of the manufacturer as well as what we had tested previously (where there’s overlap). I wouldn’t have any qualms carrying any of the Speer ammo, but my preferred SD ammo is currently the Buffalo Bore. Happily, the Boberg shot all of them without a glitch. And after getting my chrono numbers, I ran several magazines worth through the gun doing some quick shooting at cans, was getting excellent accuracy from it at about 15 yards.

I brought it home, stripped and cleaned it, and now consider it reliable enough to carry. Of course, I will continue to practice with it regularly, and keep a close on on how it performs with my reloads, and occasionally run a mag of carry ammo through it, but I don’t expect any problems. It’s a nice little gun.

Jim Downey

*By ‘informal’, I mean just using one chrono and without the lighting rig we now use for formal testing. And I would just run a magazine of ammo through, mentally noting the numbers in a running tally, then writing them down for that particular ammo, so they are necessarily just ‘ballpark’ figures. But since they jibe well with our previous numbers and what the mfg claims (which I only discovered when I sat down to write this), I think they’re pretty good.

January 20, 2015 Posted by | 9mm Luger (9x19), Boberg Arms, Data, Discussion. | , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Boberg XR9-S: a new little brother for my XR45-S.

As Frank said on Facebook this afternoon:

I knew when you got the 45 you wanted the 9mm too. It was only a matter of time.

Guilty as charged. Look what followed me home today:

Lil brother

Yup, a Boberg XR9-S: a new little brother for my XR45-S. As I did in that post, I thought I’d put up some comparison pix to give a sense of just how small this gun is, even though it really doesn’t feel like it when you hold it or shoot it.

Here it is again with the XR45:

Lil brother 2

And here’s the view that shows the thickness of both:

Top

Yeah, there’s a difference. Here’s the XR9 with a Springfield EMP (also 9mm, 3″ barrel – the XR9 has a 3.35″ barrel):

W EMP

 

And with my J-frame in .38 Special:

W J-frame

For grins, here it is on top of the J-frame:

J Top

OK, but how about in comparison to the classic premium pocket 9mm, the Rohrbaugh R9? Here ya go:

W R9

The R9 *is* a fantastic little gun, and I love it. I don’t love shooting it, though. The XR9 wins in that category. It will also handle +P ammo and holds one more round (7+1) than the Rohrbaugh. But it is a bit bigger:

R9 Top

Lastly, here it is with a Bond Arms derringer — a great little gun, with a variety of different barrels available. But there’s still just two shots in the derringer, and it actually weighs about 3 ounces more.

W Bond

While I have shot this gun (it belonged to a good friend), and know it to be dependable, I do still want to make sure that it will be able to reliably digest my preferred SD loads. So more on that to come!

 

Jim Downey

December 26, 2014 Posted by | .45 ACP, .45 Super, 9mm Luger (9x19), Boberg Arms, Discussion. | , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

With charts! Graphs! Slo-mo!

John Ervin at Brass Fetcher Ballistic Testing has put together another great video presentation, showing in several ways how Jacketed Hollow Point (JHP) ammo performs in comparison to Full Metal Jacket (FMJ) ammo for 9 different handgun cartridges. It’s long (22 minutes), but very nicely documents just exactly how the two different bullet styles behave at handgun velocities. Here’s the video:

 

 

The cartridges covered are .22 LR, .25 ACP, .32 ACP, .380 ACP, 9mm Makarov (9×18), 9mm Police (Ultra), .38 Special, 9mm Luger (9×19), and .45 ACP.  His data and presentation makes a great companion to our own data, and I really recommend that you set aside the time to watch the video at your earliest convenience.

 

Jim Downey

October 22, 2013 Posted by | .22, .25 ACP, .32 ACP, .38 Special, .380 ACP, .45 ACP, 9mm Luger (9x19), 9mm Mak, 9mm Ultra, Data, Discussion., Links | , , , , , , , , , , , , , , , , , , , , , | Leave a comment