Perceived recoil and bullet weight.
Got a great question recently, and I thought I would share some of my thoughts about it, then invite others to weigh in. Here’s the question:
I hope that you folks can help me with a question I have had for many years now. Why is the recoil so much heavier with lighter bullets in the same caliber and powder loadings than heavier bullets of the same caliber and loadings?
For example. With my S&W model 60, Gold Dot L/E 38 special 135 grain JHP +P loads recoil much harder than the Remington 125 grain JHP +P loads. The same thing happens with my Glock mod 23 .40cal when I shoot 180 grain JHP rounds vs 165 grain JHP rounds. The 165 grain rounds recoil much harder. One would think the heavier round with the same powder load would recoil harder. Can you help?
Perceived recoil is a surprisingly complex problem. It’s not just a matter of total force, but the ‘shape’ of the recoil impulse as well. Then there are the ergonomics of how a particular gun fits a particular person/hand. Add in the mechanical action of how the gun operates (some use part of the recoil energy to cycle the action, some don’t), and various psychological/physiological factors (are you tired? just had an adrenaline dump? afraid of a given gun/caliber/cartridge?), and you can see how many different factors might come into play.
A good place to start is to look at the equation for Muzzle Energy (ME). Let’s use the numbers for the Steyr M40 (very similar to your Glock 23) which was one of the ‘real world’ guns used in the .40 S&W tests we did. Calculations are from Airhog.
The 165gr Federal Hydra-Shok JHP has a velocity of 943fps out of the 4″ barrel. That gives a Muzzle Energy of 325.88ft-lbs.
The 180gr Federal Hydra-Shok JHP has a velocity of 989fps out of the 4″ barrel. That gives a Muzzle Energy of 391.04ft-lbs.
OK, that would seem to indicate that the heavier bullet should cause more recoil. The ME is higher, and you’re shooting them out of the same gun.
But I’m a little wary of that example. Usually, a lighter bullet is faster than a heavier one if they have the similar powder charge, out of barrels of the same length. Here’s another example, looking at 9mm from a Beretta 92.
The Cor-Bon 90gr JHP +P has a velocity of 1522 out of the 4.875″ barrel. That gives a Muzzle Energy of 463.05ft-lbs.
The Cor-Bon 125gr JHP +P has a velocity of 1291 out of the 4.875″ barrel. That gives a Muzzle Energy of 462.72ft-lbs.
And those are very close to the same amount of ME, and should feel about the same in terms of recoil were that the only factor.
So what’s going on? Why do we see one instance where the ammo is just a bit faster in the heavier bullet (resulting in higher ME), but much slower in another instance?
I suspect that it’s probably due to differences in loadings between the different ammo. Even with ammo from the same manufacturer (in the examples above), there’s nothing saying that they are using either the same propellant OR similar amounts of the same propellant for loadings which use different bullet weights. That means that trying to generalize the amount of recoil between different bullet weights just on the basis of brand is difficult if not impossible.
Furthermore, if you’ve done any reloading, or spend some time looking over reloading data, you’ll know that even when you’re using the same propellant in the same cases, different bullet weights usually means different bullets (in terms of manufacturer and/or shape) resulting in different seating depths and overall length. It may seem to be a trivial matter, but this results in different pressure profiles (the amount of pressure within the firing chamber of the gun). Just one example, taken from the Hodgdon Reloading site, for maximum-pressure loads using GDHPs:
The 90gr bullet with 7.0gr of Longshot powder has an overall length of 1.010″ and gives a velocity of 1,378fps, a pressure of 32,300 PSI, and would have a ME of 379.57ft-lbs.
The 115gr bullet with 6.0gr of Longshot powder has an overall length of 1.125″ and gives a velocity of 1,203fps, a pressure of 32,300 PSI and would have a ME of 369.64ft-lbs.
Note that while the heavier bullet uses a full 1.0gr less of propellant and has a longer overall length, it generates the same amount of pressure. If we drop back to the same amount of the same powder for each loading (6.0gr), then the pressure generated in the lighter bullet loading drops to 29,400 PSI, velocity drops to 1,278fps, and ME drops to 326.48ft-lbs.
But not all pressure is created equal, even if it is nominally ‘the same’. The pressure impulse also matters. That’s the curve of how the pressure rises and falls over time, which is largely related to how ‘fast’ or ‘slow’ the propellant burns. Propellants used for handgun loads tend to be very ‘fast’ (burn rapidly), so the impulse tends to be sharper. Here’s a good explanation of the matter.
And if you think about it, the heavier the bullet used, the longer/slower it takes to start moving when the cartridge is fired. That should mean that the impulse is spread out over a slightly longer time than it would be with a lighter bullet. So in some sense, the lighter bullet would result with a ‘snappier’ feel. And that may well be what it is that you’re feeling when you experience more perceived recoil (and have controlled for all the other factors) from lighter bullets.
Other thoughts on the subject?
Jim Downey
-
Archives
- May 2023 (4)
- April 2023 (1)
- August 2022 (1)
- July 2022 (3)
- May 2021 (1)
- March 2021 (1)
- December 2020 (1)
- September 2020 (4)
- August 2020 (10)
- July 2020 (1)
- February 2020 (1)
- December 2019 (1)
-
Categories
- .22
- .223
- .22WMR
- .25 ACP
- .30 carbine
- .32 ACP
- .32 H&R
- .327 Federal Magnum
- .357 Magnum
- .357 SIG
- .38 Special
- .380 ACP
- .40 S&W
- .41 Magnum
- .44 Magnum
- .44 Special
- .45 ACP
- .45 Colt
- .45 Super
- .450 SMC
- .460 Rowland
- 10mm
- 6.5 Swedish
- 9mm Luger (9×19)
- 9mm Mak
- 9mm Ultra
- Anecdotes
- black powder
- Boberg Arms
- Data
- Discussion.
- General Procedures
- historic rifles
- Links
- Revolver
- Shotgun ballistics
- Uncategorized
-
RSS
Entries RSS
Comments RSS